SUMMARY REPORT 24 DOGWOOD DRIVE (FORMERLY 465 DOGWOOD DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 24 DOGWOOD DRIVE (FORMERLY 465 DOGWOOD DRIVE) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Summary Report 24 Dogwood Drive (Formerly 465 Dogwood Drive) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	BACKGROUND INFORMATION UST REMOVAL AND ASSESSMENT PROCESS	.1
2.0	SAMPLING ACTIVITIES AND RESULTS	3
2.1	UST REMOVAL AND SOIL SAMPLING	.3
2.2	SOIL ANALYTICAL RESULTS	.4
2.3	GROUNDWATER SAMPLING	.4
2.4	GROUNDWATER ANALYTICAL RESULTS	.5
3.0	PROPERTY STATUS	. 5
4.0	REFERENCES	. 5

Tables

Table 1	Laboratory Analytical Results - Soil
Table 2	Laboratory Analytical Results - Groundwater

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assessment Reports
- Appendix C Laboratory Analytical Report Groundwater
- Appendix D Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
ft	feet
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 24 Dogwood Drive (Formerly 465 Dogwood Drive). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 24 Dogwood Drive (Formerly 465 Dogwood Drive). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 465 Dogwood Drive* (MCAS Beaufort, 2011) and *SCDHEC UST Assessment Report – 465 Dogwood Drive* (MCAS Beaufort, 2015). The UST Assessment Reports are provided in Appendix B. Details regarding the IGWA sampling activities at this site are provided in the *Initial Groundwater Investigation Report – February and March 2017* (Resolution Consultants, 2017). The laboratory report that includes the pertinent IGWA analytical results for this site is presented in Appendix C.

2.1 UST Removal and Soil Sampling

In June 2011 and January 2015, two 280 gallon heating oil USTs were removed at 24 Dogwood Drive (Formerly 465 Dogwood Drive). Tank 1 was removed on June 8, 2011 from the front grassed area, adjacent to the concrete porch. Tank 2 was removed on January 28, 2015 from

underneath the front concrete porch. The former UST locations are indicated in the figures of the UST Assessment Reports (Appendix B). The USTs were removed, cleaned, and shipped offsite for recycling. There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removals. According to the UST Assessment Reports (Appendix B), the depths to the bases of the USTs were 4'7" (Tank 1) and 5'10" (Tank 2) bgs and a single soil sample was collected for each at that depth. The samples were collected from the fill port side of the former USTs to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of each excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Reports presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST locations were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 24 Dogwood Drive (Formerly 465 Dogwood Drive) during the removal of Tank 1 were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment. The soil results collected from 24 Dogwood Drive (Formerly 465 Dogwood Drive) during the removal of Tank 2 were greater than the SCDHEC RBSLs, which indicated further investigation was required. In a letter dated August 1, 2016, SCDHEC requested an IGWA for 24 Dogwood Drive (Formerly 465 Dogwood Drive) to determine if the groundwater was impacted by petroleum COPCs. SCDHEC's request letter is provided in Appendix D.

2.3 Groundwater Sampling

On March 1, 2017, a temporary monitoring well was installed at 24 Dogwood Drive (Formerly 465 Dogwood Drive), in accordance with the South Carolina Well Standards and Regulations

(R.61-71.H-I, updated June 24, 2016). In order to provide data that can be used to determine whether COPCs are migrating to underlying groundwater, the monitoring well was placed in the same general location as the former heating oil UST (Tank 2). The former UST location is indicated on the figures of the UST Assessment Reports (Appendix B). Further details are provided in the *Initial Groundwater Investigation Report – February and March 2017* (Resolution Consultants, 2017).

The sampling strategy for this phase of the investigation required a one-time sampling event of the temporarily installed monitoring well. Following well installation and development, groundwater samples were collected using low-flow methods and shipped to an offsite laboratory for analysis of the petroleum COPCs. Upon completion of groundwater sampling, the temporary well was abandoned in accordance with the South Carolina Well Standards and Regulations R.61-71 (SCDHEC, 2016). Field forms are provided in the *Initial Groundwater Investigation Report – February and March 2017* (Resolution Consultants, 2017).

2.4 Groundwater Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 2. A copy of the laboratory analytical data report is included in Appendix C.

The groundwater results collected from 24 Dogwood Drive (Formerly 465 Dogwood Drive) were less than the SCDHEC RBSLs and the site specific groundwater VISLs (Table 2), which indicated that the groundwater was not impacted by COPCs associated with the former UST at concentrations that present a potential risk to human health and the environment.

3.0 **PROPERTY STATUS**

Based on the analytical results for soil (Tank 1) and groundwater (Tank 2), SCDHEC made the determination that NFA was required for 24 Dogwood Drive (Formerly 465 Dogwood Drive). This NFA determination was obtained in letters dated July 1, 2015 (Tank 1) and July 27, 2017 (Tank 2). SCDHEC's NFA letters are provided in Appendix D.

4.0 **REFERENCES**

Marine Corps Air Station Beaufort, 2011. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 465 Dogwood Drive, Laurel Bay Military Housing Area*, September 2011.

- Marine Corps Air Station Beaufort, 2015. *South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report 465 Dogwood Drive, Laurel Bay Military Housing Area*, July 2015.
- Resolution Consultants, 2017. *Initial Groundwater Investigation Report February and March* 2017 for Laurel Bay Military Housing Area, Multiple Properties, Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort, Beaufort, South Carolina, June 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations,* March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service*, March 2018.
- South Carolina Department of Health and Environmental Control Bureau of Water, 2016. *R.61-71, Well Standards*, June 2016.

Tables

Table 1 Laboratory Analytical Results - Soil 24 Dogwood Drive (Formerly 465 Dogwood Drive) Laurel Bay Military Housing Area Marine Corps Air Station Beaufort Beaufort, South Carolina

Constituent		Results Samples Collected 06/08/11 and 01/28/15		
Constituent	SCOREC ROSES	465 Dogwood - 1 (06/08/11)	465 Dogwood - 2 (01/28/15)	
Volatile Organic Compounds Analyzed	by EPA Method 8260B (mg/kg)	•		
Benzene	0.003	ND	0.0244	
Ethylbenzene	1.15	0.00167	0.167	
Naphthalene	0.036	0.00392	0.318	
Toluene	0.627	ND	0.00119	
Xylenes, Total	13.01	ND	0.0895	
Semivolatile Organic Compounds Ana	lyzed by EPA Method 8270D (mg/kg)			
Benzo(a)anthracene	0.66	ND	0.164	
Benzo(b)fluoranthene	0.66	ND	0.113	
Benzo(k)fluoranthene	0.66	ND	0.0445	
Chrysene	0.66	ND	0.169	
Dibenz(a,h)anthracene	0.66	ND	ND	

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.0 and 3.1 (SCDHEC, May 2015 and SCDHEC, February 2016) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligrams per kilogram

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The soil laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Table 2Laboratory Analytical Results - Groundwater24 Dogwood Drive (Formerly 465 Dogwood Drive)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Site-Specific Groundwater VISLs (µg/L) ⁽²⁾	Results Sample Collected 03/01/17		
Volatile Organic Compounds Analyzed	i by EPA Method 8260B (µg	/L)			
Benzene	5	16.24	ND		
Ethylbenzene	700	45.95	1.5		
Naphthalene	25	29.33	8.1		
Toluene	1000	105,445	ND		
Xylenes, Total	10,000	2,133	ND		
Semivolatile Organic Compounds Ana	Semivolatile Organic Compounds Analyzed by EPA Method 8270D (µg/L)				
Benzo(a)anthracene	10	NA	ND		
Benzo(b)fluoranthene	10	NA	ND		
Benzo(k)fluoranthene	10	NA	ND		
Chrysene	10	NA	ND		
Dibenz(a,h)anthracene	10	NA	ND		

Notes:

⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 3.1 (SCDHEC, February 2016).

⁽²⁾ Site-specific groundwater VISLs were calculated using the EPA JE Model Spreadsheets (Version 3.1, February 2004) and conservative modeling inputs representative of a small single-story house with an 8 foot ceiling. Site-specific groundwater VISLs were developed based on a target risk level of 1x10⁻⁶, a target hazard quotient of 1 (per target organ), and a default residential exposure scenario, assuming exposure for 24 hours/day, 350 days/year, for 26 years. Modeling was performed for a range of depths to groundwater for application as appropriate in different areas of the Laurel Bay Military Housing Area. The most conservative levels are presented for comparison. Refer to Appendix H of the Uniform Federal Policy Sampling Analysis and Sampling Plan for Vapor Media, Revision 4 (Resolution Consultants, April 2017) for additional information.

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL and/or the Site-Specific Groundwater VISL.

EPA - United States Environmental Protection Agency

JE - Johnson & Ettinger

NA - Not Applicable

ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The groundwater laboratory report is provided in Appendix C.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

µg/L - micrograms per liter

VISL - Vapor Intrusion Screening Level

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Reports

Reid 9/30/11

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received State Use Only

÷ ...

ſ

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

MCAS Beaufort, Command	ing Officer Attn: NR	EAO (Craig Ehde)
Owner Name (Corporation, Indivi	dual, Public Agency, Other)	
P.O. Box 55001		
Mailing Address		
Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Military Hou	<u>sing Area, Marine Corps Air Sta</u>	ation, Beaufort, SC
Facility Name or Company Site Ider	ntifier	
465 Dogwood Drive, Lau Street Address or State Road (as app	rel Bay Military Housing Area	<u> </u>
Beaufort,	Beaufort	
City	County	

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is: ______

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

A.	Product(ex. Gas, Kerosene)	Heating oil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
Е·	Month/Year of Last Use	Mid 1980s
F.	Depth (ft.) To Base of Tank	4'7"
G.	Spill Prevention Equipment Y/N	No
Н∙	Overfill Prevention Equipment Y/N	NO
I.	Method of Closure Removed/Filled	Removed
J _.	Date Tanks Removed/Filled	6/8/11
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

465Dogwood

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 465Dogwood was removed from the ground, and disposed at a Subtitle "D" landfill. See Attachment "A."

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) UST 465Dogwood had been previously filled with sand by others.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

		465Dogwood
		405D09w000
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C	Number of Dispensers	N/A
C.	Number of Dispensers	
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	No
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
0.		
H.	Age	Late 1950s
I.	If any corrosion, pitting, or holes were observed, des	cribe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall st	eel
and formerly contained fuel oil for heating. These USTs were	ž
installed in the late 1950s and last used in the mid 1980s.	

	Yes	No	Unk
 A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. 		х	
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild. etc.) 		x	
C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		x	
 D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal: 		х	
 E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness. 		x	

X. SAMPLE INFORMATION

SCDHEC Lab Certification Number _____ A.

B.

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
465 Dogwood	Excav at fill end	Soil	Sandy	4'7"	6/8/11 1045 hrs	P. Shaw	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

* = Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.

XII. RECEPTORS

		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system? *~900' to stormwater ca	*X nal	
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		Х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the	*X	
	contamination? *Sewer, water, electri cable & fiber o	city, ptic	
	If yes, indicate the type of utility, distance, and direction on the site map.	-	
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		X
	If yes, indicate the area of contaminated soil on the site map.		

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Broad River	Elebron Elebron	Dogwood Attree Big Big Big Big Big Big Big Big Big Big
465 DOGWOOD 0 130 260 520 780 1,040 1,300 □ 日日 Feet	SBG-EEG, Inc. 398 E. 5th North Street, Suite C Summerville SC 29483-6954 Ph. (843) 875-1930 Drawn By: L. DiAsio Dwg Date: JUNE 2011	FIGURE 1: LOCATION MAP 465 DOGWOOD DRIVE LAUREL BAY, BEAUFORT SC

Picture 1: Location of UST 465Dogwood.

Picture 2: UST 465Dogwood excavation in progress.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC UST	465Dogwood				
Benzene	ND				
Toluene	ND				
Ethylbenzene	0.00167 mg/k	a			
Xylenes	ND				
Naphthalene	0.00392 mg/k	a			
Benzo (a) anthracene	ND				
Benzo (b) fluoranthene	ND				
Benzo (k) fluoranthene	ND				
Chrysene	ND				
Dibenz (a, h) anthracene	ND				
TPH (EPA 3550)					
			 <u> </u>	 <u>г г</u>	
CoC					
Benzene			 		
Toluene					:
Ethylbenzene					
Xylenes					
Naphthalene					
Benzo (a) anthracene					
Benzo (b) fluoranthene					
Benzo (k) fluoranthene					
Chrysene					
Dibenz (a, h) anthracene					
TPH (EPA 3550)					

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL	W-1	W-2	W -3	W -4
	(µg/l)				
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

June 27, 2011 3:33:26PM

Client:	EEG - Small Business Group, Inc. (2449)
	10179 Highway 78
	Ladson, SC 29456
Attn:	Tom McElwee

Work Order:NUF19Project Name:LaurelProject Nbr:[none]P/O Nbr:1027Date Received:06/11/

NUF1953 Laurel Bay Housing Project [none] 1027 06/11/11

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
346 Ash	NUF1953-01	06/06/11 15:00
171 Dogwood	NUF1953-02	06/07/11 11:45
165 Dogwood	NUF1953-03	06/08/11 10:45
366 Aspen	NUF1953-04	06/09/11 11:15

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

Additional Laboratory Comments: ***Revised Report 6/27/2011**

Corrected client sample ID per client request.

Replaces report dated 6/27/2011 at 12:05.

South Carolina Certification Number: 84009

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainty is available upon request. This report has been electronically signed. Report Approved By:

Roxanne L. Connor

Roxanne Connor Program Manager - Conventional Accounts

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Analyst	Batch
Sample ID: NUF1953-01 (346 A	sh - Soil) Samp	pled: 06	/06/11 15:0	0						
	65.5		%	0.500	0.500	1	06/21/11 14:20	SW-846	RRS	11F5216
	A M -1 - 1 00 COT			0.500	0.500	1	00/21/11 14.20	511 540		
Volatile Organic Compounds by EP.	A Method 8260F	3	<u>.</u>							
Benzene	ND		mg/kg dry	0.00142	0.00258	1	06/19/11 04:30	SW846 8260B	МЈН	11F5296
Ethylbenzene	0.0355		mg/kg dry	0.00126	0.00258	1	06/19/11 04:30	SW846 8260B	MJH	11F5296
Naphthalene	0.0424		mg/kg dry	0.00219	0.00645	1	06/19/11 04:30	SW846 8260B	MJH	11F5296
Toluene	ND		mg/kg dry	0.00115	0.00258	1	06/19/11 04:30	SW846 8260B	MJH	11F5296
Xylenes, total	0.00387	J	mg/kg dry	0.00245	0.00645	1	06/19/11 04:30	SW846 8260B	МЈН	11F5296
Surr: 1,2-Dichloroethane-d4 (67-138%)	114%					1	06 19 11 04:30	SW846 8260B	MJH	11F5296
Surr: Dibromofluoromethane (75-125%)	100 %					1	06/19/11 04:30	SW846 8260B	MJH	11F5296
Surr: Toluene-d8 (76-129%)	112 %					1	06/19/11 04:30	SW846 8260B	MJH	11F5296
Surr: 4-Bromofluorobenzene (67-147%)	97 %					1	06:19:11:04:30	SW846 8260B	MJH	11F5296
Polyaromatic Hydrocarbons by EPA	8270D									
Acenaphthene	ND		mg/kg dry	0.0211	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Acenaphthylene	ND		mg/kg dry	0.0301	0,101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Anthracene	0.0899	J	mg/kg dry	0.0136	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Benzo (a) anthracene	0.0859	J	mg/kg dry	0.0166	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Benzo (a) pyrene	ND		mg/kg dry	0.0120	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Benzo (b) fluoranthene	ND		mg/kg dry	0.0572	0,101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Benzo (g.h.i) pervlene	ND		mg/kg dry	0.0136	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Benzo (k) fluoranthene	ND		mg/kg dry	0.0557	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Chrysene	0.0638	J	mg/kg dry	0.0467	0,101	ł	06/17/11 17:51	SW846 8270D	JLS	11F3269
Dibenz (a h) anthracene	ND		mg/kg dry	0.0226	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Fluoranthene	0.134		mg/kg dry	0.0166	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Fluorene	0.392		mg/kg dry	0.0301	0.101	ł	06/17/11 17:51	SW846 8270D	JLS	11F3269
Indeno (1.2.3-cd) pyrene	ND		mg/kg dry	0.0467	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Naphthalene	ND		mg/kg dry	0.0211	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Phenanthrene	0.786		mg/kg dry	0.0151	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Pyrene	0.164		mg/kg dry	0.0346	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
1-Methylnanhthalene	1.16		mg/kg dry	0.0181	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
2-Methylnaphthalene	1.35		mg/kg dry	0.0316	0.101	1	06/17/11 17:51	SW846 8270D	JLS	11F3269
Surr: Terphenyl-d14 (18-120%)	91%					1	06 17 11 17:51	SW846 8270D	JLS	11F3269
Surr: 2-Fluorobiphenyl (14-120%)	69 %					,	06 17 11 17:51	SW846 8270D	JLS	11F3269
Surr: Nitrobenzene-d5 (17-120%)	69 %					1	06/17/11 17:51	SW846 8270D	JLS	11F3269

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Analyst	Batch
Sample ID: NUF1953-02 (471 D	ogwood - Soil) Sample	l: 06/07/11	11:45						
General Chemistry Parameters		_								
% Dry Solids	71.3		%	0.500	0.500	1	06/21/11 14:20	SW-846	RRS	11F5216
Volatile Organic Compounds by EP	A Method 8260	В								
Benzene	0.00302	РХ	mg/kg dry	0.00145	0.00263	1	06/19/11 06:04	SW846 8260B	MJH	11F5296
Ethylbenzene	0.343	РХ	mg/kg dry	0.00129	0.00263	1	06/19/11 06:04	SW846 8260B	MJH	11F5296
Naphthalene	2.96		mg/kg dry	0.0993	0.292	50	06/18/11 02:03	SW846 8260B	MJH	11F2812
Toluene	0.00130	PX, J	mg/kg dry	0.00117	0.00263	1	06/19/11 06:04	SW846 8260B	MJH	11F5296
Xylenes, total	0.257	РХ	mg/kg dry	0.00250	0.00657	1	06/19/11 06:04	SW846 8260B	MJH	11F5296
Surr: 1,2-Dichloroethane-d4 (67-138%)	88 %					50	06 18 11 02:03	SW846 8260B	MJH	11F2812
Surr: 1,2-Dichloroethane-d4 (67-138%)	91 %					I	06:19:11:06:04	SW846 8260B	МЈН	11F5296
Surr: Dibromofluoromethane (75-125%)	75 %					50	06/18/11 02:03	SW846 8260B	MJH	11F2812
Surr: Dibromofluoromethane (75-125%)	81 %					1	06/19 11 06:04	SW846 8260B	MJH	11F5296
Surr: Toluene-d8 (76-129%)	110 %					50	06 18 11 02:03	SW846 8260B	MJH	11F2812
Surr: Toluene-d8 (76-129%)	140 %					1	06 19 11 06.04	SW846 8260B	MJH	11F5296
Surr: 4-Bromofluorobenzene (67-147%)	99 %					50	06/18/11 02:03	SW846 8260B	MJH	11F2812
Surr: 4-Bromofluorobenzene (67-147%)	248 %					1	06/19/11 06:04	SW846 8260B	MJH	11F5296
Polyaromatic Hydrocarbons by EPA	A 8270D									
Acenaphthene	ND		mg/kg dry	0.0193	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Acenaphthylene	ND		mg/kg dгу	0.0276	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Anthracene	0.0465	J	mg/kg dry	0.0124	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Benzo (a) anthracene	ND		mg/kg dry	0.0152	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Benzo (a) pyrene	ND		mg/kg dry	0.0110	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Benzo (b) fluoranthene	ND		mg/kg dry	0.0525	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Benzo (g,h,i) pervlene	ND		mg/kg dry	0.0124	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Benzo (k) fluoranthene	ND		mg/kg dry	0.0511	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Chrysene	ND		mg/kg dry	0.0428	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Dibenz (a.h) anthracene	ND		mg/kg dry	0.0207	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Fluoranthene	ND		mg/kg dry	0.0152	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Fluorene	0.262		mg/kg dry	0.0276	0.0925	t	06/17/11 18:12	SW846 8270D	JLS	11F3269
Indeno (1.2.3-cd) pyrene	ND		mg/kg dry	0.0428	0.0925	I	06/17/11 18:12	SW846 8270D	JLS	11F3269
Naphthalene	0.378		mg/kg dry	0.0193	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Phenanthrene	0.478		mg/kg dry	0.0138	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Pyrene	ND		mg/kg dry	0.0318	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
1-Methylnanhthalene	1.29		mg/kg dry	0.0166	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
2-Methylnaphthalene	2.12		mg/kg dry	0.0290	0.0925	1	06/17/11 18:12	SW846 8270D	JLS	11F3269
Surr: Terphenyl-d14 (18-120%)	87 %					1	06/17/11/18:12	SW846 8270D	JLS	<i>[1F3269</i>
Surr: 2-Fluorobiphenyl (14-120%)	67 %					,	06:17:11 18:12	SW846 8270D	JLS	11F3269
Surr: Nitrobenzene-d5 (17-120%)	62 %					I	06-17-11-18:12	SW846 8270D	JLS	[1F3269

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Analyst	Batch
Sample ID: NUF1953-03 (465 D	ogwood - Soil)	Samplee	1: 06/08/1	1 10:45						<u></u>
General Chemistry Parameters										
% Dry Solids	78.8		%	0.500	0.500	1	06/21/11 14:20	SW-8 46	RRS	11F5216
Volatile Organic Compounds by EP.	A Method 8260E	3								
Benzene	ND		mg/kg dry	0.00100	0.00182	1	06/19/11 05:01	SW846 8260B	MJH	11F5296
Ethylbenzene	0.00167	J	mg/kg dry	0.000894	0.00182	1	06/19/11 05:01	SW846 8260B	MJH	11F5296
Naphthalene	0.00392	J	mg/kg dry	0.00155	0.00456	1	06/19/11 05:01	SW846 8260B	MJH	11F5296
Toluene	ND		mg/kg dry	0.000812	0.00182	1	06/19/11 05:01	SW846 8260B	MJH	11F5296
Xylenes, total	ND		mg/kg dry	0.00173	0.00456	1	06/19/11 05:01	SW846 8260B	MJH	11F5296
Surr: 1,2-Dichloroethane-d4 (67-138%)	100 %					1	06-19-11 05:01	SW846 8260B	MJH	11F5296
Surr: Dibromofluoromethane (75-125%)	84 %					1	06-19-11-05:01	SW846 8260B	MJH	111:5296
Surr: Toluene-d8 (76-129%)	106 %					1	06/19/11 05:01	SW846 8260B	MJH	111:5296
Surr: 4-Bromofluorobenzene (67-147%)	137 %					1	06-19-11-05:01	SW846 8260B	MJH	11F5296
Polyaromatic Hydrocarbons by EPA	8270D									
Acenaphthene	ND		mg/kg dry	0.0176	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Acenaphthylene	ND		mg/kg dry	0.0251	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Anthracene	ND		mg/kg dry	0.0113	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Benzo (a) anthracene	ND		mg/kg dry	0.0138	0.0840	ì	06/17/11 18:32	SW846 8270D	JLS	11F3269
Benzo (a) pyrene	ND		mg/kg dry	0.0100	0.0840	l	06/17/11 18:32	SW846 8270D	JLS	11F3269
Benzo (b) fluoranthene	ND		mg/kg dry	0.0477	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0113	0.0840	I.	06/17/11 18:32	SW846 8270D	JLS	11F3269
Benzo (k) fluoranthene	ND		mg/kg dry	0.0464	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Chrysene	ND		mg/kg dry	0.0389	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0188	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Fluoranthene	ND		mg/kg dry	0.0138	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Fluorene	ND		mg/kg dry	0.0251	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0389	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Naphthalene	ND		mg/kg dry	0.0176	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Phenanthrene	ND		mg/kg dry	0.0125	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Pyrene	ND		mg/kg dry	0.0288	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
1-Methylnaphthalene	ND		mg/kg dry	0.0151	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
2-Methylnaphthalene	ND		mg/kg dry	0.0263	0.0840	1	06/17/11 18:32	SW846 8270D	JLS	11F3269
Surr: Terphenyl-d14 (18-120%)	84 %					1	06 17-11 18:32	SW846 8270D	JLS	111-3269
Surr: 2-Fluorobiphenyl (14-120%)	64 %					1	06:17:11 18:32	SW846 8270D	JLS	111:3269
Surr: Nitrobenzene-d5 (17-120%)	57 %					1	06/17/11 18:32	SW846 8270D	JLS	11F3269
THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MDL	MRL	Dilution Factor	Analysis Date/Time	Method	Analyst	Batch
Sample ID: NUF1953-04 (366 A General Chemistry Parameters	spen - Soil) Sai	mpled: (06/09/11 11	:15						
% Dry Solids	95.4		%	0.500	0.500	1	06/21/11 14:20	SW-846	RRS	11F5216
Volatile Organic Compounds by EP	A Method 8260E	5								
Panzana	ND		mg/kg dry	0.00136	0.00248	1	06/19/11 05:33	SW846 8260B	МЈН	11F5296
Ethylbenzene	ND		mg/kg dry	0.00121	0.00248	1	06/19/11 05:33	SW846 8260B	MJH	11F5296
Nanhthalene	ND		mg/kg dry	0.00211	0.00619	1	06/19/11 05:33	SW846 8260B	МЈН	11F5296
Toluene	ND		mg/kg dry	0.00110	0.00248	1	06/19/11 05:33	SW846 8260B	MJH	11F5296
Yvlenes total	ND		mg/kg dry	0.00235	0.00619	1	06/19/11 05:33	SW846 8260B	MJH	11F5296
Surr: 1,2-Dichloroethane-d4 (67-138%)	92 %			0.00200	0.000025	,	06/19/11 05:33	SW846 8260B	MIH	11F5296
Surr: Dibromofluoromethane (75-125%)	79 %					1	06 19:11 05:33	SW846 8260B	MJH	111:5296
Surr: Toluene-d8 (76-129%)	105 %					,	06/19/11 05:33	SW846 8260B	МЈН	111:5296
Surr: 4-Bromofluorobenzene (67-147%)	122 %					1	06-19-11-05:33	SW846 8260B	MJH	111-5296
Polyaromatic Hydrocarbons by EPA	8270D									
Acenaphthene	ND		mg/kg dry	0.0146	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Acenaphthylene	ND		mg/kg dry	0.0209	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Anthracene	ND		mg/kg dry	0.00941	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Benzo (a) anthracene	ND		mg/kg dry	0.0115	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Benzo (a) pyrene	ND		mg/kg dry	0.00837	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Benzo (b) fluoranthene	ND		mg/kg dry	0.0397	0,0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Benzo (g.h.i) pervlene	0.0816		mg/kg dry	0.00941	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Benzo (k) fluoranthene	ND		mg/kg dry	0.0387	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Chrysene	ND		mg/kg dry	0.0324	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Dibenz (a.h) anthracene	ND		mg/kg dry	0.0t57	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Fluoranthene	ND		mg/kg dry	0.0t15	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Fluorene	ND		mg/kg dry	0.0209	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Indeno (1.2.3-cd) pyrene	ND		mg/kg dry	0.0324	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Naphthalene	ND		mg/kg dry	0.0146	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Phenanthrene	ND		mg/kg dry	0.0105	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
Pyrene	ND		mg/kg dry	0.0241	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
I-Methylnaphthalene	ND		mg/kg dry	0.0126	0.0701	1	06/17/11 18:52	SW846 8270D	JLS	11F3269
2-Methylnaphthalene	ND		mg/kg dry	0.0220	0.0701	I	06/17/11 18:52	SW846 8270D	JLS	11F3269
Surr: Terphenyl-d14 (18-120%)	75 %					1	06 17 11 18:52	SW846 8270D	JLS	11F3269
Surr: 2-Fluorobiphenyl (14-120%)	54%					-	06-17-11-18:52	SW846 8270D	JLS	11F3269
Surr: Nitrobenzene-d5 (17-120%)	51 %					1	06/17/11 18:52	SW846 8270D	JLS	11F3269

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extract Vol	Date	Analyst	Extraction Method
Polyaromatic Hydrocarbons by F	EPA 8270D						
SW846 8270D	11F3269	NUF1953-01	30,39	1.00	06/16/11 15:05	JJR	EPA 3550C
SW846 8270D	11F3269	NUF1953-02	30.45	1.00	06/16/11 15:05	JJR	EPA 3550C
SW846 8270D	11F3269	NUF1953-03	30.36	1.00	06/16/11 15:05	JJR	EPA 3550C
SW846 8270D	11F3269	NUF1953-04	30.06	1.00	06/16/11 15:05	JJR	EPA 3550C
Volatile Organic Compounds by	EPA Method 8260B						
SW846 8260B	11F2812	NUF1953-01	5.51	5.00	06/06/11 15:00	TSP	EPA 5035
SW846 8260B	11 F5296	NUF1953-01RE1	5.91	5.00	06/06/11 15:00	TSP	EPA 5035
SW846 8260B	11F2812	NUF1953-02	6.00	5.00	06/07/11 11:45	TSP	EPA 5035
SW846 8260B	11F5296	NUF1953-02RE1	5.33	5.00	06/15/11 16:25	TSP	EPA 5035
SW846 8260B	11F2812	NUF1953-03	6.73	5.00	06/08/11 10:45	TSP	EPA 5035
SW846 8260B	11F5296	NUF1953-03RE1	6.96	5.00	06/08/11 10:45	TSP	EPA 5035
SW846 8260B	11F2812	NUF1953-04	4.35	5.00	06/09/11 11:15	TSP	EPA 5035
SW846 8260B	11F5296	NUF1953-04RE1	4.23	5.00	06/09/11 11:15	TSP	EPA 5035

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds by EP.	A Method 8260B					
11F2812-BLK1						
Benzene	<0.00110		mg/kg wet	11F2812	11F2812-BLK1	06/17/11 18:41
Ethylbenzene	<0.000980		mg/kg wet	11F2812	11F2812-BLK1	06/17/11 18:41
Naphthalene	< 0.00170		mg/kg wet	11F2812	11F2812-BLK1	06/17/11 18:41
Toluene	<0.000890		mg/kg wet	11F2812	11F2812-BLK1	06/17/11 18:41
Xylenes, total	<0.00190		mg/kg wet	11F2812	11F2812-BLK1	06/17/11 18:41
Surrogate: 1,2-Dichloroethane-d4	111%			11F2812	11F2812-BLK1	06/17/11 18:41
Surrogate: Dibromofluoromethane	95%			11F2812	11F2812-BLK1	06/17/11 18:41
Surrogate: Toluene-d8	107%			11F2812	11F2812-BLK1	06/17/11 18:41
Surrogate: 4-Bromofluorobenzene	115%			11F2812	11F2812-BLK1	06/17/11 18:41
11F2812-BLK2						
Benzene	<0.0550		mg/kg wet	11F2812	11F2812-BLK2	06/17/11 19:13
Ethylbenzene	<0.0490		mg/kg wet	11F2812	11F2812-BLK2	06/17/11 19:13
Naphthalene	<0.0850		mg/kg wet	11F2812	11F2812-BLK2	06/17/11 19:13
Toluene	<0.0445		mg/kg wet	11F2812	11F2812-BLK2	06/17/11 19:13
Xylenes, total	<0.0950		mg/kg wet	11F2812	11F2812-BLK2	06/17/11 19:13
Surrogate: 1,2-Dichloroethane-d4	97%			11F2812	11F2812-BLK2	06/17/11 19:13
Surrogate: Dibromofluoromethane	79%			11F2812	11F2812-BLK2	06/17/11 19:13
Surrogate: Toluene-d8	109%			11F2812	11F2812-BLK2	06/17/11 19:13
Surrogate: 4-Bromofluorobenzene	112%			11F2812	11F2812-BLK2	06/17/11 19:13
11F5296-BLK1						
Benzene	<0.00110		mg/kg wet	11F5296	11F5296-BLK1	06/18/11 21:40
Ethylbenzene	<0.000980		mg/kg wet	11F5296	11F5296-BLK1	06/18/11 21:40
Naphthalene	<0.00170		mg/kg wet	11F5296	11F5296-BLK1	06/18/11 21:40
Toluene	<0.000890		mg/kg wet	11F5296	11F5296-BLK1	06/18/11 21:40
Xylenes, total	<0.00190		mg/kg wet	11F5296	11F5296-BLK1	06/18/11 21:40
Surrogate: 1,2-Dichloroethane-d4	123%			11F5296	11F5296-BLK1	06/18/11 21:40
Surrogate: Dibromofluoromethane	106%			11F5296	11F5296-BLK1	06/18/11 21:40
Surrogate: Toluene-d8	105%			11F5296	11F5296-BLK1	06/18/11 21:40
Surrogate: 4-Bromofluorobenzene	117%			11F5296	11F5296-BLK1	06/18/11 21:40
11F5296-BLK2						
Benzene	<0.0550		mg/kg wet	11F5296	11F5296-BLK2	06/18/11 22:11
Ethylbenzene	<0.0490		mg/kg wet	11F5296	11F5296-BLK2	06/18/11 22:11
Naphthalene	<0.0850		mg/kg wet	11F5296	11F5296-BLK2	06/18/11 22:11
Toluene	<0.0445		mg/kg wet	11F5296	11F5296-BLK2	06/18/11 22:11
Xylenes, total	<0.0950		mg/kg wet	11F5296	11F5296-BLK2	06/18/11 22:11
Surrogate: 1,2-Dichloroethane-d4	95%			11F5296	11F5296-BLK2	06/18/11 22:11
Surrogate: Dibromofluoromethane	79%			11F5296	11F5296-BLK2	06/18/11 22:11
Surrogate: Toluene-d8	108%			11F5296	11F5296-BLK2	06/18/11 22:11
Surrogate: 4-Bromofluorobenzene	117%			11F5296	11F5296-BLK2	06/18/11 22:11

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA Blank - Cont.

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Volatile Organic Compounds	by EPA Method 8260B		·			
Polyaromatic Hydrocarbons b	y EPA 82 70D					
11F3269-BLK1						
Acenaphthene	<0.0140		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Acenaphthylene	<0.0200		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Anthracene	<0.00900		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Benzo (a) anthracene	<0.0110		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Benzo (a) pyrene	<0.00800		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Benzo (b) fluoranthene	<0.0380		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Benzo (g,h,i) perylene	<0.00900		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Benzo (k) fluoranthene	<0.0370		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Chrysene	< 0.0310		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Dibenz (a,h) anthracene	<0.0150		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Fluoranthene	< 0.0110		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Fluorene	<0.0200		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Indeno (1,2,3-cd) pyrene	< 0.0310		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Naphthalene	<0.0140		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Phenanthrene	< 0.0100		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Pyrene	< 0.0230		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
1-Methylnaphthalene	<0.0120		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
2-Methylnaphthalene	< 0.0210		mg/kg wet	11F3269	11F3269-BLK1	06/17/11 15:09
Surrogate: Terphenyl-d14	75%			11F3269	11F3269-BLK1	06/17/11 15:09
Surrogate: 2-Fluorobiphenyl	58%			11F3269	11F3269-BLK1	06/17/11 15:09
Surrogate: Nitrobenzene-d5	57%			11F3269	11F3269-BLK1	06/17/11 15:09

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA Duplicate

Analyte	Orig. Val.	Duplicate	Q	Units	RPD	Limit	Batch	Sample Duplicated	% Rec.	Analyzed Date/Time
General Chemistry Parameters										
11F5216-DUP1										
% Dry Solids	82.2	82.4		%	0.3	20	11F5216	NUF1921-01		06/21/11 14:20

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA LCS

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Volatile Organic Compounds by E	PA Method 8260B							
11E2812-BS1								
Benzene	50.0	45.7		ug/kg	91%	78 - 126	11F2812	06/17/11 17:07
Ethylbenzene	50.0	55.2		ug/kg	110%	79 - 130	11F2812	06/17/11 17:07
Naphthalene	50.0	71.5		ug/kg	143%	72 - 150	11F2812	06/17/11 17:07
Toluene	50.0	53.7		ug/kg	107%	76 - 126	11F2812	06/17/11 17:07
Xylenes, total	150	168		ug/kg	112%	80 - 130	11F2812	06/17/11 17:07
Surrogate: 1,2-Dichloroethane-d4	50.0	51.4			103%	67 - 138	11F2812	06/17/11 17:07
Surrogate: Dibromofluoromethane	50.0	46.4			93%	75 - 125	11F2812	06/17/11 17:07
Surrogate: Toluene-d8	50.0	53.3			107%	76 - 129	11F2812	06/17/11 17:07
Surrogate: 4-Bromofluorobenzene	50.0	53.6			107%	67 - 147	11F2812	06/17/11 17:07
11F5296-BS1								
Benzene	50.0	44.5		ug/kg	89%	78 - 126	11F5296	06/18/11 20:06
Ethylbenzene	50.0	54.2		ug/kg	108%	79 - 130	11F5296	06/18/11 20:06
Naphthalene	50.0	67.0		ug/kg	134%	72 - 150	11F5296	06/18/11 20:06
Toluene	50.0	53.2		ug/kg	106%	76 - 126	11F5296	06/18/11 20:06
Xylenes, total	150	164		ug/kg	109%	80 - 130	11F5296	06/18/11 20:06
Surrogate: 1,2-Dichloroethane-d4	50.0	50.2			100%	67 - 138	11F5296	06/18/11 20:06
Surrogate: Dibromofluoromethane	50.0	44.8			90%	75 - 125	11F5296	06/18/11 20:06
Surrogate: Toluene-d8	50.0	53.3			107%	76 - 129	11F5296	06/18/11 20:06
Surrogate: 4-Bromofluorobenzene	50.0	55.5			111%	67 - 147	11F5296	06/18/11 20:06
Polyaromatic Hydrocarbons by EP	PA 8270D							
11F3269-BS1								
Acenaphthene	1.67	1.46		mg/kg wet	88%	49 - 120	11F3269	06/17/11 15:29
Acenaphthylene	1.67	1.46		mg/kg wet	87%	52 - 120	11F3269	06/17/11 15:29
Anthracene	1.67	1.51		mg/kg wet	91%	58 - 120	11F3269	06/17/11 15:29
Benzo (a) anthracene	1.67	1.50		mg/kg wet	90%	57 - 120	11F3269	06/17/11 15:29
Benzo (a) pyrene	1.67	1.64		mg/kg wet	99%	55 - 120	11F3269	06/17/11 15:29
Benzo (b) fluoranthene	1.67	1.43		mg/kg wet	86%	51 - 123	11F3269	06/17/11 15:29
Benzo (g,h,i) perylene	1.67	1.53		mg/kg wet	92%	49 - 121	11F3269	06/17/11 15:29
Benzo (k) fluoranthene	1.67	1.59		mg/kg wet	95%	42 - 129	11F3269	06/17/11 15:29
Chrysene	1.67	1.47		mg/kg wet	88%	55 - 120	11F3269	06/17/11 15:29
Dibenz (a,h) anthracene	1.67	1.53		mg/kg wet	92%	50 - 123	11F3269	06/17/11 15:29
Fluoranthene	1.67	1.61		mg/kg wet	96%	58 - 120	11F3269	06/17/11 15:29
Fluorene	1.67	1.54		mg/kg wet	93%	54 - 120	11F3269	06/17/11 15:29
Indeno (1,2,3-cd) pyrene	1.67	1.53		mg/kg wet	92%	50 - 122	11F3269	06/17/11 15:29
Naphthalene	1.67	1.38		mg/kg wet	83%	28 - 120	11F3269	06/17/11 15:29
Phenanthrene	1.67	1.48		mg/kg wet	89%	56 - 120	11F3269	06/17/11 15:29
Pyrene	1.67	1.42		mg/kg wet	85%	56 - 120	11F3269	06/17/11 15:29
1-Methylnaphthalene	1.67	1.07		mg/kg wet	64%	36 - 120	11F3269	06/17/11 15:29
2-Methylnaphthalene	1.67	1.28		mg/kg wet	77%	36 - 120	11F3269	06/17/11 15:29

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA LCS - Cont.

Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time
Polyaromatic Hydrocarbons by E	CPA 8270D							
11F3269-BS1								
Surrogate: Terphenyl-d14	1.67	1.43			86%	18 - 120	11F3269	06/17/11 15:29
Surrogate: 2-Fluorobiphenyl	1.67	1.20			72%	14 - 120	11F3269	06/17/11 15:29
Surrogate: Nitrobenzene-d5	1.67	1.03			62%	17 - 120	11F3269	06/17/11 15:29

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA LCS Dup

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Volatile Organic Compounds by	EPA Method 8	8260B										
11F2812-BSD1												
Вепzеле		47.2		ug/kg	50.0	94%	78 - 126	3	50	11F2812		06/17/11 17:38
Ethylbenzene		55.6		ug/kg	50.0	111%	79 - 130	0.8	50	11F2812		06/17/11 17:38
Naphthalene		72.8		ug/kg	50.0	146%	72 - 150	2	50	11F2812		06/17/11 17:38
Toluene		53.7		ug/kg	50.0	107%	76 - 126	0.09	50	11F2812		06/17/11 17:38
Xylenes, total		167		ug/kg	150	111%	80 - 130	0.4	50	11F2812		06/17/11 17:38
Surrogate: 1,2-Dichloroethane-d4		52.7		ug/kg	50.0	105%	67 - 138			11F2812		06/17/11 17:38
Surrogate: Dibromofluoromethane		46.7		ug/kg	50.0	93%	75 - 125			11F2812		06/17/11 17:38
Surrogate: Toluene-d8		53.5		ug/kg	50.0	107%	76 - 129			11F2812		06/17/11 17:38
Surrogate: 4-Bromofluorobenzene		55.0		ug/kg	50.0	110%	67 - 147			11F2812		06/17/11 17:38
11F5296-BSD1												
Benzene		56.3		ug/kg	50.0	113%	78 - 126	23	50	11F5296		06/18/11 20:37
Ethylbenzene		56.2		ug/kg	50.0	112%	79 - 130	4	50	11F5296		06/18/11 20:37
Naphthalene		73.6		ug/kg	50.0	147%	72 - 150	9	50	11F5296		06/18/11 20:37
Toluene		55.2		ug/kg	50.0	110%	76 - 126	4	50	11F5296		06/18/11 20:37
Xylenes, total		169		ug/kg	150	113%	80 - 130	3	50	11F5296		06/18/11 20:37
Surrogate: 1,2-Dichloroethane-d4		60.2		ug/kg	50.0	120%	67 - 138			11F5296		06/18/11 20:37
Surrogate: Dibromofluoromethane		54.9		ug/kg	50.0	110%	75 - 125			11F5296		06/18/11 20:37
Surrogate: Toluene-d8		53.5		ug/kg	50.0	107%	76 - 129			11F5296		06/18/11 20:37
Surrogate: 4-Bromofluorobenzene		55.8		ug/kg	50.0	112%	67 - 147			11F5296		06/18/11 20:37

THE LEADER IN ENVIRONMENTAL TESTING

ł

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA Matrix Spike

Analyte	Orig. Val.	MS Val	Q	Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time
Volatile Organic Compounds by I	EPA Method 826	0B				·				
11F2812-MS1										
Benzene	ND	2.43		mg/kg wet	2.50	97%	42 - 141	11F2812	NUF1575-06	06/18/11 04:09
Ethylbenzene	0.239	3.18		mg/kg wet	2.50	118%	21 - 165	11F2812	NUF1575-06	06/18/11 04:09
Naphthalene	5.17	8.68		mg/kg wet	2.50	140%	10 - 160	11F2812	NUF1575-06	06/18/11 04:09
Toluene	ND	2.44		mg/kg wet	2.50	98%	45 - 145	11F2812	NUF1575-06	06/18/11 04:09
Xylenes, total	ND	8.99		mg/kg wet	7.50	120%	31 - 159	11F2812	NUF1575-06	06/18/11 04:09
Surrogate: 1,2-Dichloroethane-d4		51.0		ug/kg	50.0	102%	67 - 138	11F2812	NUF1575-06	06/18/11 04:09
Surrogate: Dibromofluoromethane		48.1		ug/kg	50.0	96%	75 - 125	11F2812	NUF1575-06	06/18/11 04:09
Surrogate: Toluene-d8		57.2		ug/kg	50.0	114%	76 - 129	11F2812	NUF1575-06	06/18/11 04:09
Surrogate: 4-Bromofluorobenzene		68.6		ug/kg	50.0	137%	67 - 147	11F2812	NUF1575-06	06/18/11 04:09
11F5296-MS1										
Benzene	0.00292	0.0369		mg/kg wet	0.0450	75%	42 - 141	11F5296	NUF2751-03RE	06/19/11 07:08
Ethylbenzene	0.00379	0.0465		mg/kg wet	0.0450	95%	21 - 165	11F5296	NUF2751-03RE	06/19/11 07:08
Naphthalene	ND	0.0556		mg/kg wet	0.0450	123%	10 - 160	11F5296	NUF2751-03RE	06/19/11 07:08
Toluene	0.00889	0.0477		mg/kg wet	0.0450	86%	45 - 145	11F5296	NUF2751-03RE	06/19/11 07:08
Xylenes, total	0.00711	0.137		mg/kg wet	0.135	96%	31 - 159	11F5296	NUF2751-03RE	06/19/11 07:08
Surrogate: 1,2-Dichloroethane-d4		47.4		ug/kg	50.0	95%	67 - 138	11F5296	NUF2751-03RE	06/19/11 07:08
Surrogate: Dibromofluoromethane		42.6		ug/kg	50.0	85%	75 - 125	11F5296	I NUF2751-03RE	06/19/11 07:08
Surrogate: Toluene-d8		54.6		ug/kg	50.0	109%	76 - 129	11F5296	I NUF2751-03RE	06/19/11 07:08
Surrogate: 4-Bromofluorobenzene		53.2		ug/kg	50.0	106%	67 - 147	11F5296	1 NUF2751-03RE 1	06/19/11 07:08
Polyaromatic Hydrocarbons by E 11F3269-MS1	PA 8270D									
Acenaphthene	ND	1.33		mg/kg dry	1.7 9	74%	42 - 120	11F3269	NUF1906-01	06/17/11 15:50
Acenaphthylene	ND	1.35		mg/kg dry	1.79	75%	32 - 120	11F3269	NUF1906-01	06/17/11 15:50
Anthracene	ND	1.43		mg/kg dry	1.7 9	80%	10 - 200	11F3269	NUF1906-01	06/17/11 15:50
Benzo (a) anthracene	ND	1.41		mg/kg dry	1. 79	79%	41 - 120	11F3269	NUF1906-01	06/17/11 15:50
Benzo (a) pyrene	ND	1.53		mg/kg dry	1.79	85%	33 - 121	11F3269	NUF1906-01	06/17/11 15:50
Benzo (b) fluoranthene	ND	1.37		mg/kg dry	1.79	77%	26 - 137	11F3269	NUF1906-01	06/17/11 15:50
Benzo (g,h,i) perylene	ND	1.37		mg/kg dry	1. 79	77%	21 - 124	11F3269	NUF1906-01	06/17/11 15:50
Benzo (k) fluoranthene	ND	1.37		mg/kg dry	1.79	76%	14 - 140	11F3269	NUF1906-01	06/17/11 15:50
Chrysene	ND	1.41		mg/kg dry	1.79	79%	28 - 123	11F3269	NUF1906-01	06/17/11 15:50
Dibenz (a,h) anthracene	ND	1.36		mg/kg dry	1.79	76%	25 - 127	11F3269	NUF1906-01	06/17/11 15:50

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	\$ Project Number:	[none]
Attn	Tom McElwee	 Received:	06/11/11 09:00

PROJECT OUALITY CONTROL DATA Matrix Spike - Cont. Target Sample Analyzed Date/Time Range Batch Spiked Analyte Orig. Val. MS Val Q Units Spike Conc % Rec. Polyaromatic Hydrocarbons by EPA 8270D 11F3269-MS1 Fluoranthene ND 1.35 mg/kg dry 1.79 75% 38 - 120 11F3269 NUF1906-01 06/17/11 15:50 Fluorene ND 1.40 78% 41 - 120 1.79 11F3269 NUF1906-01 06/17/11 15:50 mg/kg dry Indeno (1,2,3-cd) pyrene ND 1.35 1.79 75% 25 - 123 11F3269 NUF1906-01 06/17/11 15:50 mg/kg dry Naphthalene ND 1.34 1.79 75% 25 - 120 11F3269 NUF1906-01 06/17/11 15:50 mg/kg dry Phenanthrene ND 1.41 mg/kg dry 1.79 79% 37 - 120 11F3269 NUF1906-01 06/17/11 15:50 Ругепе 0.0369 1.59 1.79 87% 29 - 125 11F3269 NUF1906-01 06/17/11 15:50 mg/kg dry 1-Methylnaphthalene ND 1.02 mg/kg dry 1.79 57% 19 - 120 11F3269 NUF1906-01 06/17/11 15:50 2-Methylnaphthalene ND 1.18 mg/kg dry 1.79 66% 11 - 120 11F3269 NUF1906-01 06/17/11 15:50 Surrogate: Terphenyl-d14 1.46 mg/kg dry 1.79 81% 18 - 120 11F3269 NUF1906-01 06/17/11 15:50 Surrogate: 2-Fluorobiphenyl 1.02 mg/kg dry 1.79 57% 14 - 120 11F3269 NUF1906-01 06/17/11 15:50 06/17/11 15:50 17 - 120 Surrogate: Nitrobenzene-d5 0.893 mg/kg dry 1.79 50% 11F3269 NUF1906-01

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

					6-il				·		E	
Analyte	Orig. Val.	Duplicate	Q	Units	Conc	% Rec.	Range	RPD	Limit	Batch	Duplicated	Date/Time
Volatile Organic Compounds by	EPA Method 8	8260B										
11F2812-MSD1												
Benzene	ND	1.75		mg/kg wet	2.50	70%	42 - 141	32	50	11F2812	NUF1575-06	06/18/11 04:40
Ethylbenzene	0.239	2.73		mg/kg wet	2.50	100%	21 - 165	15	50	11F2812	NUF1575-06	06/18/11 04:40
Naphthalene	5.17	6.16		mg/kg wet	2.50	40%	10 - 160	34	50	11F2812	NUF1575-06	06/18/11 04:40
Toluene	ND	2.16		mg/kg wet	2.50	86%	45 - 145	12	50	11F2812	NUF1575-06	06/18/11 04:40
Xylenes, total	ND	7.49		mg/kg wet	7.50	100%	31 - 159	18	50	11F2812	NUF1575-06	06/18/11 04:40
Surrogate: 1,2-Dichloroethane-d4		42.6		ug/kg	50.0	85%	67 - 138			11F2812	NUF1575-06	06/18/11 04:40
Surrogate: Dibromofluoromethane		40.4		ug/kg	50.0	81%	75 - 125			11F2812	NUF1575-06	06/18/11 04:40
Surrogate: Toluene-d8		58.0		ug/kg	50.0	116%	76 - 129			11F2812	NUF1575-06	06/18/11 04:40
Surrogate: 4-Bromofluorobenzene		56.5		ug/kg	50.0	113%	67 - 147			11F2812	NUF1575-06	06/18/11 04:40
11F5296-MSD1												
Benzene	0.00292	0.0321		mg/kg wet	0.0491	59%	42 - 141	14	50	11F5296	NUF2751-03RE	06/19/11 07:39
Ethylbenzene	0.00379	0.0319		mg/kg wet	0.0491	57%	21 - 165	37	50	11F 5296	NUF2751-03RE	06/19/11 07:39
Naphthalene	ND	0.0470		mg/kg wet	0.0491	96%	10 - 160	17	50	11F 5296	NUF2751-03RE	06/19/11 07:39
Toluene	0.00889	0.0390		mg/kg wet	0.0491	61%	45 - 145	20	50	11F5296	I NUF2751-03RE	06/19/11 07:39
Xylenes, total	0.00711	0.0902		mg/kg wet	0.147	56%	31 - 159	41	50	11F5296	1 NUF2751-03RE	06/19/11 07:39
Surrogate: 1,2-Dichloroethane-d4		50.0		ug/kg	50.0	100%	67 - 138			11F 5296	1 NUF2751-03RE	06/19/11 07:39
Surrogate: Dibromofluoromethane		43.9		ug/kg	50.0	88%	75 - 125			11F5296	1 NUF2751-03RE	06/19/11 07:39
Surrogate: Toluene-d8		53.4		ug/kg	50.0	107%	76 - 129			11F5296	1 NUF2751-03RE	06/19/11 07:39
Surrogate: 4-Bromofluorobenzene		58.5		ug/kg	50.0	117%	67 - 147			11F5296	1 NUF2751-03RE 1	06/19/11 07:39
Polyaromatic Hydrocarbons by	EPA 827 0D										·	
11E3269_MSD1												
Acenaphthene	ND	1.40		mg/kg dry	1.79	78%	42 - 120	5	40	11F3269	NUF1906-01	06/17/11 16:10
Acenaphthylene	ND	1.39		mg/kg dry	1.79	77%	32 - 120	3	30	11F3269	NUF1906-01	06/17/11 16:10
Anthracene	ND	1.43		mg/kg dry	1,79	80%	10 - 200	0.4	50	11F3269	NUF1906-01	06/17/11 16:10
Benzo (a) anthracene	ND	1.43		mg/kg dry	1.79	79%	41 - 120	0.8	30	11F3269	NUF1906-01	06/17/11 16:10
Benzo (a) pyrene	ND	1.52		mg/kg dry	1.79	85%	33 - 121	0.6	33	11F3269	NUF1906-01	06/17/11 16:10
Benzo (b) fluoranthene	ND	1.43		mg/kg dry	1.79	80%	26 - 137	4	42	11F3269	NUF1906-01	06/17/11 16:10
Benzo (g,h,i) perylene	ND	1.40		mg/kg dry	1.79	78%	21 - 124	2	32	11F3269	NUF1906-01	06/17/11 16:10
Benzo (k) fluoranthene	ND	1.33		mg/kg dry	1.79	74%	14 - 140	2	39	11F3269	NUF1906-01	06/17/11 16:10
Chrysene	ND	1.42		mg/kg dry	1.79	79%	28 - 123	0.7	34	11F3269	NUF1906-01	06/17/11 16:10
Dibenz (a,h) anthracene	ND	1.36		mg/kg dry	1.79	76%	25 - 127	0.2	31	11F3269	NUF1906-01	06/17/11 16:10
Fluoranthene	ND	1.36		mg/kg dry	1.79	76%	38 - 120	0.6	35	11F3269	NUF1906-01	06/17/11 16:10
Fluorene	ND	1.40		mg/kg dry	1.79	78%	41 - 120	0.4	37	11F3269	NUF1906-01	06/17/11 16:10
Indeno (1,2,3-cd) pyrene	ND	1.39		mg/kg dry	1.79	77%	25 - 123	3	32	11F3269	NUF1906-01	06/17/11 16:10

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

PROJECT QUALITY CONTROL DATA

Matrix Spike Dup - Cont.

Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Polyaromatic Hydrocarbons by	EPA 8270D											
11F3269-MSD1												
Naphthalene	ND	1.36		mg/kg dry	1.79	76%	25 - 120	2	42	11F3269	NUF1906-01	06/17/11 16:10
Phenanthrene	ND	1.49		mg/kg dry	1.79	83%	37 - 120	6	32	11F3269	NUF1906-01	06/17/11 16:10
Pyrene	0.0369	1.75		mg/kg dry	1.79	95%	29 - 125	9	40	11F3269	NUF1906-01	06/17/11 16:10
1-Methylnaphthalene	ND	0.997		mg/kg dry	1.79	56%	19 - 120	2	45	11F3269	NUF1906-01	06/17/11 16:10
2-Methylnaphthalene	ND	1.20		mg/kg dry	1.79	67%	11 - 120	1	50	11F3269	NUF1906-01	06/17/11 16:10
Surrogate: Terphenyl-d14		1.52		mg/kg dry	1.79	85%	18 - 120			11F 3269	NUF1906-01	06/17/11 16:10
Surrogate: 2-Fluorobiphenyl		1.05		mg/kg dry	1.79	59%	14 - 120			11F3269	NUF1906-01	06/17/11 16:10
Surrogate: Nitrobenzene-d5		0.904		mg/kg dry	1. 79	50%	17 - 120			11F3269	NUF1906-01	06/17/11 16:10

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

TestAmerica Nashville

CERTIFICATION SUMMARY

Method	Matrix	AIHA	Nelac	South Carolina
SW846 8260B	Soil	N/A	х	Х
SW846 8270D	Soil		х	Х
SW-846	Soil			

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

Client	EEG - Small Business Group, Inc. (2449)	Work Order:	NUF1953
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Attn	Tom McElwee	Received:	06/11/11 09:00

DATA QUALIFIERS AND DEFINITIONS

- J Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection Limit (MDL). Concentrations within this range are estimated.
- PX Sample for VOA analysis not received in preserved VOA vials or Encore or similar sampling device.
- ND Not detected at the reporting limit (or method detection limit if shown)

METHOD MODIFICATION NOTES

NUF1953 06/27/11 23 59																														
TestAmer Client Name/Account #		Nashvill 2960 Fo Nashvill 2449	e Divisi ster Cri e, TN 3	ion eighte 7204	òn			Тс	Pho oli F I	one: (ree:) Fax: (615-: 800-: 615-:	726-(765-(726-;	0177 0980 3404	• •						To a meti regu	issist u nods, i latory	is in us s this v purpos	ing th ork b es?	e prop eing co	er ar ondu	nalytic	al or			
Address	. 10179 Highwa	y 78																					Corr	plianc	e Mo	onitorir	ıg?	۲e	"S	Ne
City/State/Zip	Ladson, SC 29	456	_													_		•	.	~~			En	forcen	ient /	Action	?	Ye	s	No
Project Manager	: Tom McElwee	email: mcel	wee@e	eginc.	net				•••••									Site	State	: <u>SC</u>	10	5	<u></u>							
Telephone Number	843.412.2097			-¥		F	ax No		14	3)	3	27	27 .	- /	J.	7.1	ſ		PO	" <u> </u>	<u>/</u>		1							
Sampler Name: (Print	P_i	EAH	15	55	Ar	5		1	-	<u> </u>		<u> </u>	- -	<u> </u>	1	<u> </u>														
Sampler Signature	·	\$1)			<u> </u>									_		-		Pro		: Laun	el Bay	Housi	ig Pro	ject						
		1	7					2	rese	rvativ	e	\geq	1		Matri			Pre	уест н	:										
		10	B				T	12			Ť	T		ГТ		Î	Т	8	<u> </u>	<u> </u>	T-	<u> </u>	Analyz	ze For:			T	T		
Sample ID / Description 346 ASA 471 Digiciel 4165 Decipied 366 ASPEN	Date Sampled	1570 1)45 1)45 115	C No of Containers Shi	X X Grab	Composite	Field Filtered	Ica HND (Part 1 And)	(Source of the second s	NaOH (Orange Label)	H ₅ SQ, Plastic (Yehow Lab	AU AU A None (Black Laber	Other (Specify)//R/	Groundwater	Wastewater	Dinking Water	XXX X Sol	Other (specify):	XXXX BTEX + Napth - 82	X X > PAH - 8270D									2	ा ८३ ८४	RUSH TAT (Pre-Schedul
											1		H		+-	+		_					+	+-	+			'		
Special Instructions																						+		T	┭			 		+
Relinquished by	Li ICi	(/	Tim 04 Tim		Receiv	ved by	TestA		Ship	ment	:				Date Date	FE	DEX	Time		Labor	atory Temp VOCs	Comm erature Free	ents: Upoi of Hea	n Rece	⊥ipt: :e?	°.]		L Y
					M	-4	LL	<u>~`</u>	2	K	_			41	1.11		C	14i												

ATTACHMENT A

NON-HAZARDOUS MANIFEST

	1. Generator'	s US EP	A ID No.	Ma	nifest Doc	No.	2. Page 1	of		,	· · · · · ·
	NON-HAZARDOUS MANIFEST						1				
	3. Generator's Mailing Address:	6						et Number			
	MCAS, BEAUFORT	Gen	erator's Site Ac	iaress (if di	fferent than m	nailing):	A. Widthie	ist Number			
		1					W	MNA	0031	5814	
	BEALLEORT SC 29907							B. State Generator's ID			
	4 Generator's Phone 843-228-6461										
	5. Transporter 1 Company Name	1	6		Number		+				
			0.	05 21 7 12	- Humber		C. State T	ransporter's	מו		
	EEG, INC.						D Transn	orter's Phon	<u> </u>	879-04	1
	7. Transporter 2 Company Name		8.	US EPA ID	Number				c 043	575 04.	
							E. State T	ransporter's	ID		
i							F. Transpo	orter's Phone	e		
	9. Designated Facility Name and Site Address		10.	US EPA I	D Number						
	HICKORY HILL LANDFILL					G. State F	acility ID				
	2621 LOW COUNTRY ROAD						H. State F	acility Phone	e 843-9	987-464	3
	RIDGELAND, SC 29936										
					1 12 6-					· · · · ·	
G	11. Description of Waste Materials				No.	Type	13. Fotal Quantity	14. Unit Wt./Vol.	I. N	lisc. Comme	nts
E	a. HEATING OIL TANKS FILLED WITH SAND										
E											
R	WM Profile # 102655	SC									
A	b.										
히											
R	WM Profile #										
	с.										
	WM Profile #										
	a.										
	WM Profile #					<u> </u>					
	J. Additional Descriptions for Materials Listed Abov	e			K. Dispos	al Location					
					Cell				Level		
	- 11				Grid						
	15. Special Handling Instructions and Additional Infor	mation	mart.	3 4	> 341	lepts 1	1	.)	14 L	. 44 C	est M
				•	· · ·	••		1			
	$\xrightarrow{\uparrow} 331 \xrightarrow{\land} 142 \xrightarrow{\uparrow} 33$	1	1154×) 47	<u>1 1 2</u>	1 10 × d	v j		· · · .	5 . A.
	Purchase Order #		EMERG	ENCY CON	ITACT / PHO	DNE NO.:		J			
	16. GENERATOR'S CERTIFICATE:										
	I hereby certify that the above-described materials ar	e not ha	azardous waste	s as define	d by CFR P	art 261 or a	ny applicable	e state law, h	nave been fu	lly and	
	Accurately described, classified and packaged and are	in prop	Signature "	r transport	tation acco	rding to app	blicable regul	ations.	Manth	Davi	
			Signature	On benan	01	.			WORT	Day	• :
T	17. Transporter 1 Acknowledgement of Receipt of Ma	terials	F						I	<u>-</u>	1
A	Printed Name		Signature		,		·		Month	Day	Year
s	NIMPE Ind Jacob			<u> </u>	1.1	Leven and the second			X		11
D	18. Transporter 2 Acknowledgement of Receipt of Ma	aterials	-						`	. •	
r	Printed Name		Signature						Month	Day	Year
R											
1	19. Certificate of Final Treatment/Disposal										•
	l certify, on behalf of the above listed treatment facili	ty, that	to the best of m	ny knowle	dge, the ab	ove-describ	ed waste wa	as managed	in compliand	e with al	
	applicable laws, regulations, permits and licenses on t	he date	s listed above.								
	20. Facility Owner or Operator: Certification of receip	ot of no	n-hazardous ma	aterials co	vered by th	is manifest					
	Printed Name		Signature						Month	Day	Year
							<u> </u>				
	White- IREATMENT, STORAGE, DISPOSAL FACILITY CO	PY	Blue- GEN	ERATOR #	2 COPY		Yel	low- GENER	ATOR #1 CO	ργ	
	Pink- FACILITY LISE ONLY		Gold- TRAN	ISPORTER	#1 COPV						

TRANSPORTER #1 COPY

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received

State Use Only

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

I. OWNERSHIP OF UST (S)

MCAS Beaufort, C	Commanding Officer Attn: NR	EAO (Craig Ehde)
Owner Name (Corporati	on, Individual, Public Agency, Other)	
P.O. Box 55001		
Mailing Address		
Beaufort,	South Carolina	29904-5001
City	State	Zip Code
843	228-7317	Craig Ehde
Area Code	Telephone Number	Contact Person

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Milita	- ry Housing Area, Marine Corps Air Station Booufort of
Facility Name or Company	Site Identifier
465 Dogwood Driv Street Address or State Ro	e, Laurel Bay Military Housing Area d(asapplicable)
Beaufort,	Beaufort
City	County

Attachment 2

III. INSURANCE INFORMATION

Insurance Statement

The petroleum release reported to DHEC on ______ at Permit ID Number _____ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? YES____ NO____ (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is: ______

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this _____ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

A.	Product(ex. Gas, Kerosene)	Heating oil
B.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
F.	Month/Year of Last Use	Mid 1980s
F.	Depth (ft.) To Base of Tank	5'10"
G.	Spill Prevention Equipment Y/N	No
н	Overfill Prevention Equipment Y/N	No
T.	Method of Closure Removed/Filled	Removed
J	Date Tanks Removed/Filled	1/28/15
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

465Dogwood-b

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) <u>UST 465Dogwood-2 was removed from the ground, cleaned and recycled.</u> See Attachment "A."

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests)

Contaminated water was pumped from UST 465Dogwood-2 and disposed by MCAS.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found throughout the tank.

VII. PIPING INFORMATION

F

T

Т

		465Dogwood-2
		Steel
A.	Construction Material(ex. Steel, FRP)	& Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	No
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
Н.	Age	Late 1950s
I.	If any corrosion, pitting, or holes were observed,	describe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply and return lines were sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

This is the second tank removed from 465 Dogwood Drive.

IX. SITE CONDITIONS

	Yes	No	Unk
 A. Were any petroleum-stained or contaminated soils found in the Usexcavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. 	ST	x	
 B. Were any petroleum odors detected in the excavation, soil borings trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, mild, etc.) 	3,	х	
C. Was water present in the UST excavation, soil borings, or trenche If yes, how far below land surface (indicate location and depth)?	rs?	X	
 D. Did contaminated soils remain stockpiled on site after closure? If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal: 		х	
 E. Was a petroleum sheen or free product detected on any excavation or boring waters? If yes, indicate location and thickness. 	n	x	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 84009

Β.

Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
465 Dogwd-2	Excav at fill end	Soil	Sandy	5'10"	1/28/15 1515 hrs	P. Shaw	
						-	
8		-					
9							
10							
11					1		
12							
13							
14							
15							
16							
17							
18							
19							
20							

* = Depth Below the Surrounding Land Surface

XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.

XII. RECEPTORS

		Yes	No
Α.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system? *stormwater drainage ca	*X nal	
	If yes, indicate type of receptor, distance, and direction on site map.		
B.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		Х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer, water, electri cable & fiber o	*X city, ptic	
	If yes, indicate the type of utility, distance, and direction on the site map.	E	
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		х
2	If yes, indicate the area of contaminated soil on the site map.		

XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 465Dogwood-2.

Picture 2: UST 465Dogwood-2.

Picture 3: Tank pit.

Picture 4: Site at completion of tank removal.

UST 465Dogwood-2 CoC 0.0244 mg/kg Benzene 0.00119 mg/kg Toluene 0.167 mg/kg Ethylbenzene 0.0895 mg/kg **Xylenes** Naphthalene 0.318 mg/kg 0.164 mg/kg Benzo (a) anthracene 0.113 mg/kg Benzo (b) fluoranthene 0.0445 mg/kg Benzo (k) fluoranthene 0.169 mg/kg Chrysene Dibenz (a, h) anthracene ND TPH (EPA 3550)

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

CoC					
Benzene					
Toluene					1
Ethylbenzene					
Xylenes			1		
Naphthalene					
Benzo (a) anthracene					
Benzo (b) fluoranthene					
Benzo (k) fluoranthene	-				
Chrysene					
Dibenz (a, h) anthracene					
TPH (EPA 3550)					

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				E.C.1
1,2-DCA	5		1	_	
Lead	Site specific				

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

TestAmerica Job ID: 490-71526-1

Client Project/Site: Laurel Bay Housing Project

For:

Small Business Group Inc. 10179 Highway 78 Ladson, South Carolina 29456

Attn: Tom McElwee

Kull Hage

Authorized for release by: 2/6/2015 2:29:45 PM

Ken Hayes, Project Manager II (615)301-5035 ken.hayes@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	8
QC Association	15
Chronicle	17
Method Summary	18
Certification Summary	19
Chain of Custody	20
Receipt Checklists	22

Sample Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
490-71526-1	1352 Cardinal - 2	Soil	01/26/15 14:15	01/30/15 08:00
490-71526-2	465 Dogwood - 2	Soil	01/28/15 15:15	01/30/15 08:00

•

TestAmerica Job ID: 490-71526-1

TestAmerica Nashville
Job ID: 490-71526-1

Laboratory: TestAmerica Nashville

Narrative

Job Narrative 490-71526-1

Comments No additional comments.

Receipt

The samples were received on 1/30/2015 8:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.7° C.

GC/MS VOA

Method(s) 8260B: The method blank for batch 224716 contained Naphthalene above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed. (MB 490-224716/8)

Method(s) 8260B: Surrogate recovery for the following sample(s) was outside control limits: 1352 Cardinal - 2 (490-71526-1), 465 Dogwood - 2 (490-71526-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) 8260B: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate/sample duplicate (MS/MSD/DUP) associated with batch 224510

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
x	Surrogate is outside control limits
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
В	Compound was found in the blank and sample.

GC/MS Semi VOA

Qualifier	Qualifier Description
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains no Free Liquid
DER	Duplicate error ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision level concentration
MDA	Minimum detectable activity
EDL	Estimated Detection Limit
MDC	Minimum detectable concentration
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative error ratio
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client Sample ID: 1352 Cardinal - 2

Date Collected: 01/26/15 14:15 Date Received: 01/30/15 08:00

Lab Sample ID: 490-71526-1

Matrix: Soil Percent Solids: 80.6

6

Method: 8260B - Volatile Or	ganic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00193	0.000648	mg/Kg	22	01/26/15 14:15	02/01/15 05:23	1
Ethylbenzene	0.116		0.00193	0.000648	mg/Kg	ы	01/26/15 14:15	02/01/15 05:23	1
Naphthalene	2.95	в	0.320	0.109	mg/Kg	E.	01/26/15 14:15	02/02/15 21:00	1
Toluene	0.00102	L	0.00193	0.000716	mg/Kg	n	01/26/15 14:15	02/01/15 05:23	1
Xylenes, Total	0.118		0.00290	0.000648	mg/Kg	n	01/26/15 14:15	02/01/15 05:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70 - 130				01/26/15 14:15	02/01/15 05:23	1
1,2-Dichloroethane-d4 (Surr)	108		70 - 130				01/26/15 14:15	02/02/15 21:00	1
4-Bromofluorobenzene (Surr)	294	x	70 - 130				01/26/15 14:15	02/01/15 05:23	1
4-Bromofluorobenzene (Surr)	108		70 - 130				01/26/15 14:15	02/02/15 21:00	1
Dibromofluoromethane (Surr)	110		70 - 130				01/26/15 14:15	02/01/15 05:23	1
Dibromofluoromethane (Surr)	107		70 - 130				01/26/15 14:15	02/02/15 21:00	1
Toluene-d8 (Surr)	97		70 - 130				01/26/15 14:15	02/01/15 05:23	1
Toluene-d8 (Surr)	98		70 - 130				01/26/15 14:15	02/02/15 21:00	1
Method: 8270D - Semivolati	le Organic Compou	nds (GC/MS	3)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	0.0675		0.0666	0.00995	mg/Kg	35	02/03/15 09:34	02/03/15 22:07	1
Acenaphthylene	0.0426	J	0.0666	0.00895	mg/Kg	Ħ	02/03/15 09:34	02/03/15 22:07	1
Anthracene	0.0446	J	0.0666	0.00895	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Benzo[a]anthracene	ND		0.0666	0.0149	mg/Kg	14	02/03/15 09:34	02/03/15 22:07	1
Benzo[a]pyrene	ND		0.0666	0.0119	mg/Kg	12	02/03/15 09:34	02/03/15 22:07	1
Benzo[b]fluoranthene	ND		0.0666	0.0119	mg/Kg	a	02/03/15 09:34	02/03/15 22:07	1
Benzo[g,h,i]perylene	ND		0.0666	0.00895	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Benzo[k]fluoranthene	ND		0.0666	0.0139	mg/Kg	4	02/03/15 09:34	02/03/15 22:07	1
1-Methylnaphthalene	1.09		0.0666	0.0139	mg/Kg	18	02/03/15 09:34	02/03/15 22:07	1
Pyrene	0.0379	J	0.0666	0.0119	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Phenanthrene	0.408		0.0666	0.00895	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Chrysene	ND		0.0666	0.00895	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Dibenz(a,h)anthracene	ND		0.0666	0.00696	mg/Kg	1.1	02/03/15 09:34	02/03/15 22:07	1
Fluoranthene	0.0371	J	0.0666	0.00895	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Fluorene	0.178		0.0666	0.0119	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Indeno[1,2,3-cd]pyrene	ND		0.0666	0.00995	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Naphthalene	0.119		0.0666	0.00895	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
2-Methylnaphthalene	1.74		0.0666	0.0159	mg/Kg	n	02/03/15 09:34	02/03/15 22:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		29 - 120				02/03/15 09:34	02/03/15 22:07	1
Terphenyl-d14 (Surr)	64		13 - 120				02/03/15 09:34	02/03/15 22:07	1
Nitrobenzene-d5 (Surr)	54		27 - 120				02/03/15 09:34	02/03/15 22:07	1
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Solids	81		0.10	0.10	%			01/30/15 14:20	1

Client Sample ID: 465 Dogwood - 2

Date Collected: 01/28/15 15:15 Date Received: 01/30/15 08:00

Lab Sample ID: 490-71526-2 Matrix: Soil

Percent Solids: 79.5

Method: 8260B - Volatile Orga	anic Compounds (Result	GC/MS)	RI	MDL	Unit	р	Prepared	Analyzed	Dil Fac	5
Banzana	0.0244	quanner	0.00187	0.000626	ma/Ka	14	01/28/15 15:15	02/01/15 05:56	1	-
Ethylbenzene	0.167		0.00187	0.000626	ma/Ka	n	01/28/15 15:15	02/01/15 05:56	1	6
Nanhthalene	0.318		0.00467	0.00159	ma/Ka		01/28/15 15:15	02/01/15 05:56	1	
Toluene	0.00119	.1	0.00187	0.000691	ma/Ka	n	01/28/15 15:15	02/01/15 05:56	1	
Xvienes Total	0.0895		0.00280	0.000626	ma/Ka	12	01/28/15 15:15	02/01/15 05:56	4	
Aylenee, rotar					5 5					
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	96		70 - 130				01/28/15 15:15	02/01/15 05:56	1	
4-Bromofluorobenzene (Surr)	331	x	70 - 130				01/28/15 15:15	02/01/15 05:56	1	
Dibromofluoromethane (Surr)	98		70 - 130				01/28/15 15:15	02/01/15 05:56	1	
Toluene-d8 (Surr)	101		70 - 130				01/28/15 15:15	02/01/15 05:56	1	
Method: 8270D - Semivolatile	organic Compou	nds (GC/M	S)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Acenaphthene	0.0940		0.0666	0.00994	mg/Kg	ti ti	02/03/15 09:34	02/03/15 22:29	1	
Acenaphthylene	0.0692		0.0666	0.00894	mg/Kg	n	02/03/15 09:34	02/03/15 22:29	1	
Anthracene	0.0922		0.0666	0.00894	mg/Kg	27	02/03/15 09:34	02/03/15 22:29	1	
Benzo[a]anthracene	0.164		0.0666	0.0149	mg/Kg	731	02/03/15 09:34	02/03/15 22:29	1	
Benzo[a]pyrene	0.0670		0.0666	0.0119	mg/Kg	ц	02/03/15 09:34	02/03/15 22:29	1	
Benzo[b]fluoranthene	0.113		0.0666	0.0119	mg/Kg	п	02/03/15 09:34	02/03/15 22:29	1	
Benzo[g,h,i]perylene	ND		0.0666	0.00894	mg/Kg	31	02/03/15 09:34	02/03/15 22:29	1	
Benzo[k]fluoranthene	0.0445	J	0.0666	0.0139	mg/Kg	st.	02/03/15 09:34	02/03/15 22:29	1	
1-Methylnaphthalene	0.963		0.0666	0.0139	mg/Kg	я.	02/03/15 09:34	02/03/15 22:29	1	
Pyrene	0.319		0.0666	0.0119	mg/Kg	-	02/03/15 09:34	02/03/15 22:29	1	
Phenanthrene	0.597		0.0666	0.00894	mg/Kg	¤	02/03/15 09:34	02/03/15 22:29	1	
Chrysene	0.169		0.0666	0.00894	mg/Kg	2	02/03/15 09:34	02/03/15 22:29	1	
Dibenz(a,h)anthracene	ND		0.0666	0.00696	mg/Kg	20	02/03/15 09:34	02/03/15 22:29	1	
Fluoranthene	0.398		0.0666	0.00894	mg/Kg	n	02/03/15 09:34	02/03/15 22:29	1	
Fluorene	0.188		0.0666	0.0119	mg/Kg	11	02/03/15 09:34	02/03/15 22:29	1	
Indeno[1,2,3-cd]pyrene	ND		0.0666	0.00994	mg/Kg	11	02/03/15 09:34	02/03/15 22:29	1	
Naphthalene	0.194		0.0666	0.00894	mg/Kg	11	02/03/15 09:34	02/03/15 22:29	1	
2-Methylnaphthalene	0.921		0.0666	0.0159	mg/Kg	12	02/03/15 09:34	02/03/15 22:29	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl (Surr)	80		29 - 120				02/03/15 09:34	02/03/15 22:29	1	
Terphenyl-d14 (Surr)	81		13 - 120				02/03/15 09:34	02/03/15 22:29	1	
Nitrobenzene-d5 (Surr)	72		27 - 120				02/03/15 09:34	02/03/15 22:29	1	
General Chemistry										
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Percent Solids	80		0.10	0.10	%			01/30/15 14:20	1	

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-224510/6 Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Analysis Batch: 224510 MB MB RL Analyte **Result Qualifier** MDL Unit D Prepared Analyzed **Dil Fac** Benzene ND 0.00200 0.000670 mg/Kg 02/01/15 03:47 Ethylbenzene ND 0.00200 0.000670 mg/Kg 02/01/15 03:47 Naphthalene ND 0.00500 0.00170 mg/Kg 02/01/15 03:47 ND 0.00200 0.000740 mg/Kg 02/01/15 03:47 Toluene Xylenes, Total ND 0.00300 0.000670 mg/Kg 02/01/15 03:47 MB MB Limits Dil Fac Surrogate %Recovery Qualifier Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 90 70 - 130 02/01/15 03:47 70 - 130 4-Bromofluorobenzene (Surr) 94 02/01/15 03:47 70 - 130 Dibromofluoromethane (Surr) 104 02/01/15 03:47 70 - 130 02/01/15 03:47 Toluene-d8 (Surr) 101 Lab Sample ID: LCS 490-224510/3 Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 224510 Spike LCS LCS %Rec. Added **Result** Qualifier Unit %Rec Limits D 0.06337 75 - 127 500 mg/Kg 127

0.05384

0.06694

0.06156

0.1142

mg/Kg

mg/Kg

mg/Kg

mg/Kg

108

134

123

114

80 - 134

69 - 150

80 - 132

80 - 137

Client Sample ID: Lab Control Sample Dup

Analyte			Added
Benzene			0.0500
Ethylbenzene			0.0500
Naphthalene			0.0500
Toluene			0.0500
Xylenes, Total			0.100
	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	92		70 - 130

1,2-Dichloroethane-d4 (Surr)	92	70 - 130
4-Bromofluorobenzene (Surr)	93	70 - 130
Dibromofluoromethane (Surr)	100	70 - 130
Toluene-d8 (Surr)	99	70 - 130

Lab Sample ID: LCSD 490-224510/4 Matrix: Solid Analysis Batch: 224510

And yord Duton. EL TOTO											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.0500	0.06085		mg/Kg		122	75 - 127	4	50
Ethylbenzene			0.0500	0.05368		mg/Kg		107	80 - 134	0	50
Naphthalene			0.0500	0.07343		mg/Kg		147	69 - 150	9	50
Toluene			0.0500	0.06121		mg/Kg		122	80 - 132	1	50
Xylenes, Total			0.100	0.1135		mg/Kg		113	80 - 137	1	50
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	94		70 - 130								
4-Bromofluorobenzene (Surr)	94		70 - 130								
Dibromofluoromethane (Surr)	100		70 - 130								
Toluene-d8 (Surr)	98		70 - 130								

1

1

1

1

1

1

TestAmerica Nashville

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-224716/8							Client S	ample ID: Metho	d Blank
Analysis Potob: 224716								Prep Type: 1	otal/NA
Analysis Batch, 224/10	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.100	0.0340	ma/Ka			02/02/15 13:52	1
Ethylbenzene	ND		0.100	0.0340	ma/Ka			02/02/15 13:52	1
Naphthalene	0.08898	J	0.250	0.0850	ma/Ka			02/02/15 13:52	1
Toluene	ND		0.100	0.0370	ma/Ka			02/02/15 13:52	1
Xvlenes, Total	ND		0.150	0.0340	ma/Ka			02/02/15 13:52	1
			10,000						
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		70 - 130					02/02/15 13:52	1
4-Bromofluorobenzene (Surr)	92		70 - 130					02/02/15 13:52	1
Dibromofluoromethane (Surr)	113		70 - 130					02/02/15 13:52	1
Toluene-d8 (Surr)	94		70 - 130					02/02/15 13:52	1
Lab Sample ID: MB 490-224716/9							Client S	ample ID: Metho	d Blank
Matrix: Solid								Prep Type: 1	fotal/NA
Analysis Batch: 224716									
and a second the second s	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.00200	0.000680	mg/Kg			02/02/15 14:21	1
Ethylbenzene	ND		0.00200	0.000680	mg/Kg			02/02/15 14:21	1
Naphthalene	ND		0.00500	0.00170	mg/Kg			02/02/15 14:21	1
Toluene	ND		0.00200	0.000740	mg/Kg			02/02/15 14:21	1
Xylenes, Total	ND		0.00300	0.000680	mg/Kg			02/02/15 14:21	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	111		70 - 130					02/02/15 14:21	1
4-Bromofluorobenzene (Surr)	91		70 - 130					02/02/15 14:21	1
Dibromofluoromethane (Surr)	108		70 - 130					02/02/15 14:21	1
Toluene-d8 (Surr)	98		70 - 130					02/02/15 14:21	1
Lab Sample ID: LCS 490-224716/3						С	lient Sample	ID: Lab Control	Sample
Matrix: Solid								Prep Type: 1	Total/NA
Analysis Batch: 224716									
			Spike	LCS LCS				%Rec.	
Analyte			Added	Result Qua	lifier Ur	nit	D %Rec	Limits	

	Added	Result	Qualifier	Unit	D	%Rec	Limits
	0.0500	0.05268		mg/Kg		105	75 - 127
	0.0500	0.05507		mg/Kg		110	80 - 134
	0.0500	0.05591		mg/Kg		112	69 - 150
	0.0500	0.05454		mg/Kg		109	80 - 132
	0.100	0.1117		mg/Kg		112	80 - 137
LCS							
Qualifier	Limits						
	70 - 130						
	70 - 130						
	70 - 130						
	70 - 130						
	LCS Qualifier	Added 0.0500 0.0500 0.0500 0.0500 0.100 LCS Qualifier Limits 70 - 130 70 - 130 70 - 130 70 - 130	Added Result 0.0500 0.05268 0.0500 0.05507 0.0500 0.05591 0.0500 0.05454 0.100 0.1117 LCS Qualifier Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Added Result Qualifier 0.0500 0.05268 0.0500 0.0500 0.05507 0.05507 0.0500 0.05591 0.0500 0.0500 0.05454 0.100 0.100 0.1117 0.1117 LCS Qualifier Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Added Result Qualifier Unit 0.0500 0.05268 mg/Kg 0.0500 0.05507 mg/Kg 0.0500 0.05591 mg/Kg 0.0500 0.05454 mg/Kg 0.100 0.1117 mg/Kg LCS Qualifier Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Added Result Qualifier Unit D 0.0500 0.05268 mg/Kg 0.0500 0.05507 mg/Kg 0.0500 0.05591 mg/Kg 0.0500 0.05591 mg/Kg 0.0500 0.05454 mg/Kg 0.01117 mg/Kg 0.01117 0.011117 0.01117 0.01117	Added Result Qualifier Unit D %Rec 0.0500 0.05268 mg/Kg 105 0.0500 0.05507 mg/Kg 110 0.0500 0.05591 mg/Kg 112 0.0500 0.05454 mg/Kg 109 0.100 0.1117 mg/Kg 112 LCS Qualifier Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130

TestAmerica Nashville

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

95

94

Lab Sample ID: LCS 490-224716/5 Matrix: Solid

Client Sample ID:	Lab	Control	Sample
	Prep	Type: 1	Total/NA

7

Analysis Batch: 224716

			Spike	LCS	LCS				%Rec.
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene			2.50	2.603		mg/Kg		104	75 - 127
Ethylbenzene			2.50	2.673		mg/Kg		107	80 - 134
Naphthalene			2.50	2.483		mg/Kg		99	69 - 150
Toluene			2.50	2.567		mg/Kg		103	80 - 132
Xylenes, Total			5.00	5.416		mg/Kg		108	80 - 137
	LCS	LCS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	110		70 - 130						
4-Bromofluorobenzene (Surr)	92		70 - 130						
Dibromofluoromethane (Surr)	112		70 - 130						

70 - 130

Lab Sample ID: LCSD 490-224716/4

Matrix: Solid Analysis Batch: 224716

Toluene-d8 (Surr)

	Spike
Analyte	Added
Benzene	0.0500
Ethylbenzene	0.0500
Naphthalene	0.0500
Toluene	0.0500
Xylenes, Total	0.100
	LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	112		70 - 13
4-Bromofluorobenzene (Surr)	94		70 - 13
Dibromofluoromethane (Surr)	114		70 - 13
Toluene-d8 (Surr)	98		70 - 13

Lab Sample ID: LCSD 490-224716/6 Matrix: Solid

Analysis Batch: 224716

Toluene-d8 (Surr)

Allalysis Daloll. 224/10										
and the second			Spike	LCSD	LCSD				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene			2.50	2.611		mg/Kg		104	75 - 127	
Ethylbenzene			2.50	2.677		mg/Kg		107	80 - 134	
Naphthalene			2.50	2.486		mg/Kg		99	69 - 150	
Toluene			2.50	2.563		mg/Kg		103	80 - 132	
Xylenes, Total			5.00	5.377		mg/Kg		108	80 - 137	
	LCSD	LCSD								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	110		70 - 130							
4-Bromofluorobenzene (Surr)	92		70 - 130							
Dibromofluoromethane (Surr)	111		70 - 130							

70 - 130

LCSD	LCSD				%Rec		RPD
Result	Qualifier	Unit	n	%Rec	l imite	RPD	Limit
0.05413	quanner	mg/Kg	2	108	75 - 127	3	50
0.05496		mg/Kg		110	80 - 134	0	50
0.05351		mg/Kg		107	69 - 150	4	50
0.05454		mg/Kg		109	80 - 132	0	50
0.1102		mg/Kg		110	80 - 137	1	50

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

SD	LCSD				%Rec.		RPD
sult	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
611		mg/Kg		104	75 - 127	0	50
677		mg/Kg		107	80 - 134	0	50
486		mg/Kg		99	69 - 150	0	50
563		mg/Kg		103	80 - 132	0	50
377		mg/Kg		108	80 - 137	1	50

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-71562-B	8-1 MS							Client	Sample ID: Prep T	Matrix	Spike
Analysis Batch: 224716									1.10		
Analysis Baton: 2211 10	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	ND		0.0500	0.05148		mg/Kg		103	31 - 143		
Ethylbenzene	ND		0.0500	0.05623		mg/Kg		112	23 - 161		
Naphthalene	ND		0.0500	0.05812		mg/Kg		116	10 - 176		
Toluene	ND		0.0500	0.05614		mg/Kg		112	30 - 155		
Xylenes, Total	ND		0.100	0.1119		mg/Kg		112	25 - 162		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	104		70 - 130								
4-Bromofluorobenzene (Surr)	95		70 - 130								
Dibromofluoromethane (Surr)	105		70 - 130								
Toluene-d8 (Surr)	98		70 - 130								
Lab Sample ID: 490-71562-0	C-1 MSD					CI	ient Sa	ample ID): Matrix Sp	oike Dup	licate
Matrix: Solid									Prep T	ype: Tot	tal/NA
Analysis Batch: 224716											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.0500	0.05066		mg/Kg		101	31 - 143	2	50
Ethylbenzene	ND		0.0500	0.05828		mg/Kg		117	23 - 161	4	50
Naphthalene	ND		0.0500	0.06256		mg/Kg		125	10 - 176	7	50
Toluene	ND		0.0500	0.05790		mg/Kg		116	30 - 155	3	50
Xylenes, Total	ND		0.100	0.1157		mg/Kg		116	25 - 162	3	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1,2-Dichloroethane-d4 (Surr)	100		70 - 130								
4-Bromofluorobenzene (Surr)	93		70 - 130								
Dibromofluoromethane (Surr)	103		70 - 130								
Toluene-d8 (Surr)	101		70 - 130								

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 490-224884/1-A
Matrix: Solid
Analysis Batch: 224923

				Prep Type: T	otal/NA
				Prep Batch:	224884
MB					
Qualifier	RL MDL	Unit	D Prepared	Analyzed	Dil Fac
0.06	0.0100	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.00900	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.00900	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.0150	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.0120	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.0120	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.00900	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.0140	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.0140	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.0120	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
0.06	0.00900	mg/Kg	02/03/15 09:34	02/03/15 18:45	1
	MB Qualifier 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	MB RL MDL 0.0670 0.0100 0.0670 0.00900 0.0670 0.00900 0.0670 0.0150 0.0670 0.0120 0.0670 0.0120 0.0670 0.0120 0.0670 0.0120 0.0670 0.0120 0.0670 0.0120 0.0670 0.0140 0.0670 0.0140 0.0670 0.0120 0.0670 0.0140 0.0670 0.0120 0.0670 0.0140 0.0670 0.0120 0.0670 0.0120	MB MDL Unit 0.0670 0.0100 mg/Kg 0.0670 0.00900 mg/Kg 0.0670 0.00900 mg/Kg 0.0670 0.0100 mg/Kg 0.0670 0.0100 mg/Kg 0.0670 0.0120 mg/Kg 0.0670 0.0120 mg/Kg 0.0670 0.0120 mg/Kg 0.0670 0.0140 mg/Kg	MB Dit D Prepared 0.0670 0.0100 mg/Kg 02/03/15 09:34 0.0670 0.00900 mg/Kg 02/03/15 09:34 0.0670 0.0120 mg/Kg 02/03/15 09:34 0.0670 0.0140 mg/Kg 02/03/15 09:34 0.0670 0.0120 mg/Kg 02/03/15 09:34 0.0670 0.0120 mg/Kg 02/03/15 09:3	MB MDL Unit D Prep Batch 0.0670 0.0100 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.00900 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.00900 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.00900 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0150 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0150 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0120 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0120 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0120 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0140 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0140 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0140 mg/Kg 02/03/15 09:34 02/03/15 18:45 0.0670 0.0140

TestAmerica Nashville

Client Sample ID: Method Blank

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 224884

Prep Type: Total/NA

Prep Batch: 224884

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 490-224884/1-A Matrix: Solid

Analysis Batch: 224923

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chrysene	ND		0.0670	0.00900	mg/Kg		02/03/15 09:34	02/03/15 18:45	1
Dibenz(a,h)anthracene	ND		0.0670	0.00700	mg/Kg		02/03/15 09:34	02/03/15 18:45	1
Fluoranthene	ND		0.0670	0.00900	mg/Kg		02/03/15 09:34	02/03/15 18:45	1
Fluorene	ND		0.0670	0.0120	mg/Kg		02/03/15 09:34	02/03/15 18:45	1
Indeno[1,2,3-cd]pyrene	ND		0.0670	0.0100	mg/Kg		02/03/15 09:34	02/03/15 18:45	1
Naphthalene	ND		0.0670	0.00900	mg/Kg		02/03/15 09:34	02/03/15 18:45	1
2-Methylnaphthalene	ND		0.0670	0.0160	mg/Kg		02/03/15 09:34	02/03/15 18:45	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	58		29 - 120				02/03/15 09:34	02/03/15 18:45	1
Terphenyl-d14 (Surr)	62		13 - 120				02/03/15 09:34	02/03/15 18:45	1
Nitrobenzene-d5 (Surr)	53		27 - 120				02/03/15 09:34	02/03/15 18:45	1

Lab Sample ID: LCS 490-224884/2-A Matrix: Solid Analysis Batch: 224923

and the second	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Acenaphthylene	1.67	1.359		mg/Kg		82	38 - 120
Anthracene	1.67	1.373		mg/Kg		82	46 - 124
Benzo[a]anthracene	1.67	1.398		mg/Kg		84	45 - 120
Benzo[a]pyrene	1.67	1.369		mg/Kg		82	45 - 120
Benzo[b]fluoranthene	1.67	1.387		mg/Kg		83	42 - 120
Benzo[g,h,i]perylene	1.67	1.356		mg/Kg		81	38 - 120
Benzo[k]fluoranthene	1.67	1.393		mg/Kg		84	42 - 120
1-Methylnaphthalene	1.67	1.266		mg/Kg		76	32 - 120
Pyrene	1.67	1.336		mg/Kg		80	43 - 120
Phenanthrene	1.67	1.345		mg/Kg		81	45 - 120
Chrysene	1.67	1.364		mg/Kg		82	43 - 120
Dibenz(a,h)anthracene	1.67	1.399		mg/Kg		84	32 - 128
Fluoranthene	1.67	1.352		mg/Kg		81	46 - 120
Fluorene	1.67	1.394		mg/Kg		84	42 - 120
Indeno[1,2,3-cd]pyrene	1.67	1.374		mg/Kg		82	41 - 121
Naphthalene	1.67	1.265		mg/Kg		76	32 - 120
2-Methylnaphthalene	1.67	1.299		mg/Kg		78	28 - 120

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	75		29 - 120
Terphenyl-d14 (Surr)	76		13 - 120
Nitrobenzene-d5 (Surr)	68		27 - 120

Lab Sample ID: 490-71491-F-1-E MS Matrix: Solid Analysis Batch: 224923

Analysis Batch: 224923									Prep Batch:	224884
	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acenaphthylene	ND		1.75	1.312		mg/Kg		75	25 - 120	
Anthracene	ND		1.75	1.396		mg/Kg	n	80	28 - 125	

TestAmerica Nashville

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

7

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 490-71491-F-1-E MS

Matrix: Solid

Analysis Batch: 224923									Prep Batch: 224884
	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzo[a]anthracene	ND		1.75	1.393		mg/Kg	n	80	23 - 120
Benzo[a]pyrene	ND		1.75	1.356		mg/Kg	n	77	15 - 128
Benzo[b]fluoranthene	ND		1.75	1.429		mg/Kg	21	82	12 - 133
Benzo[g,h,i]perylene	ND		1.75	1.360		mg/Kg	1	78	22 - 120
Benzo[k]fluoranthene	ND		1.75	1.329		mg/Kg	¤	76	28 - 120
1-Methylnaphthalene	ND		1.75	1.245		mg/Kg	¤	71	10 - 120
Pyrene	ND		1.75	1.337		mg/Kg	Ħ	76	20 - 123
Phenanthrene	ND		1.75	1.346		mg/Kg	12	77	21 - 122
Chrysene	ND		1.75	1.357		mg/Kg	¤	77	20 - 120
Dibenz(a,h)anthracene	ND		1.75	1.447		mg/Kg	12	83	12 - 128
Fluoranthene	ND		1.75	1.375		mg/Kg	n	78	10 - 143
Fluorene	ND		1.75	1.368		mg/Kg	n	78	20 - 120
Indeno[1,2,3-cd]pyrene	ND		1.75	1.388		mg/Kg	n	79	22 - 121
Naphthalene	ND		1.75	1.226		mg/Kg	a	70	10 - 120
2-Methylnaphthalene	ND		1.75	1.289		mg/Kg	a	74	13 - 120
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
2-Fluorobiphenyl (Surr)	69		29 - 120						
Terphenyl-d14 (Surr)	72		13 - 120						
Nitrobenzene-d5 (Surr)	64		27 - 120						

Lab Sample ID: 490-71491-F-1-F MSD Matrix: Solid

Analysis Batch: 224923									Prep	Batch: 2	24884
and a more	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Acenaphthylene	ND		1.72	1.257		mg/Kg	ц	73	25 - 120	4	50
Anthracene	ND		1.72	1.316		mg/Kg	n	76	28 - 125	6	49
Benzo[a]anthracene	ND		1.72	1.353		mg/Kg	27	78	23 - 120	3	50
Benzo[a]pyrene	ND		1.72	1.289		mg/Kg		75	15 - 128	5	50
Benzo[b]fluoranthene	ND		1.72	1.306		mg/Kg	11	76	12 - 133	9	50
Benzo[g,h,i]perylene	ND		1.72	1.306		mg/Kg	n	76	22 - 120	4	50
Benzo[k]fluoranthene	ND		1.72	1.315		mg/Kg	M	76	28 - 120	1	45
1-Methylnaphthalene	ND		1.72	1.151		mg/Kg	n	67	10 - 120	8	50
Pyrene	ND		1.72	1.325		mg/Kg	1	77	20 - 123	1	50
Phenanthrene	ND		1.72	1.259		mg/Kg	n	73	21 - 122	7	50
Chrysene	ND		1.72	1.286		mg/Kg	n	75	20 - 120	5	49
Dibenz(a,h)anthracene	ND		1.72	1.352		mg/Kg	R	78	12 - 128	7	50
Fluoranthene	ND		1.72	1.322		mg/Kg	**	77	10 - 143	4	50
Fluorene	ND		1.72	1.300		mg/Kg	n	75	20 - 120	5	50
Indeno[1,2,3-cd]pyrene	ND		1.72	1.294		mg/Kg	2.	75	22 - 121	7	50
Naphthalene	ND		1.72	1.089		mg/Kg	ų,	63	10 - 120	12	50
2-Methylnaphthalene	ND		1.72	1.153		mg/Kg	1Å.	67	13 - 120	11	50
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery Qualifier	Limits
2-Fluorobiphenyl (Surr)	63	29 - 120
Terphenyl-d14 (Surr)	72	13 - 120

TestAmerica Nashville

Percent Solids

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

78

Lab Sample ID: 490-7149	I-F-1-F MSD					,	Client Sample	e ID: Matrix Spike Dup	licate	
Matrix: Solid								Prep Type: Tot	al/NA	
Analysis Batch: 224923								Prep Batch: 22	24884	5
	MSD	MSD								-
Surrogate	%Recovery	Qualifier	Limits							
Nitrobenzene-d5 (Surr)	58		27 - 120							
										7
Method: Moisture - Pe	rcent Moisture									
Lab Sample ID: 490-7150	1-B-1 DU							Client Sample ID: Dup	licate	
Matrix: Solid								Prep Type: Tot	al/NA	
Analysis Batch: 224304										
	Sample	Sample		DU	DU				RPD	
Analyte	Result	Qualifier		Result	Qualifier	Unit	D	RPD	Limit	
Percent Solids	78			77		%		0.2	20	

TestAmerica Nashville

GC/MS VOA

Prep Batch: 224330

and the state of the second						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-71526-1	1352 Cardinar - 2	TOLAIMMA	301	5055	5	
Prep Batch: 224337						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-71526-1	1352 Cardinal - 2	Total/NA	Soil	5035		
490-71526-2	465 Dogwood - 2	Total/NA	Soil	5035		
Analysis Batch: 224510	0				8	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-71526-1	1352 Cardinal - 2	Total/NA	Soil	8260B	224337	
490-71526-2	465 Dogwood - 2	Total/NA	Soil	8260B	224337	
LCS 490-224510/3	Lab Control Sample	Total/NA	Solid	8260B		
LCSD 490-224510/4	Lab Control Sample Dup	Total/NA	Solid	8260B		
MB 490-224510/6	Method Blank	Total/NA	Solid	8260B		
Analysis Batch: 224710	6					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-71526-1	1352 Cardinal - 2	Total/NA	Soil	8260B	224330	
490-71562-B-1 MS	Matrix Spike	Total/NA	Solid	8260B		
490-71562-C-1 MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B		
LCS 490-224716/3	Lab Control Sample	Total/NA	Solid	8260B		
LCS 490-224716/5	Lab Control Sample	Total/NA	Solid	8260B		
LCSD 490-224716/4	Lab Control Sample Dup	Total/NA	Solid	8260B		
LCSD 490-224716/6	Lab Control Sample Dup	Total/NA	Solid	8260B		
MB 490-224716/8	Method Blank	Total/NA	Solid	8260B		
MB 490-224716/9	Method Blank	Total/NA	Solid	8260B		
GC/MS Semi VOA						
Prep Batch: 224884						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-71491-F-1-E MS	Matrix Spike	Total/NA	Solid	3550C		
490-71491-F-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	3550C		
490-71526-1	1352 Cardinal - 2	Total/NA	Soil	3550C		
490-71526-2	465 Dogwood - 2	Total/NA	Soil	3550C		
LCS 490-224884/2-A	Lab Control Sample	Total/NA	Solid	3550C		
MB 490-224884/1-A	Method Blank	Total/NA	Solid	3550C		
Analysis Batch: 22492	3					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
490-71491-F-1-E MS	Matrix Spike	Total/NA	Solid	8270D	224884	
490-71491-F-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8270D	224884	
490-71526-1	1352 Cardinal - 2	Total/NA	Soil	8270D	224884	
490-71526-2	465 Dogwood - 2	Total/NA	Soil	8270D	224884	
LCS 490-224884/2-A	Lab Control Sample	Total/NA	Solid	8270D	224884	
MB 490-224884/1-A	Method Blank	Total/NA	Solid	8270D	224884	

QC Association Summary

Client: Small Business Group Inc. Project/Site: Laurel Bay Housing Project TestAmerica Job ID: 490-71526-1

General Chemistry

Analysis Batch: 224304

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
490-71483-A-1 MS	Matrix Spike	Total/NA	Solid	Moisture	
490-71483-A-1 MSD	Matrix Spike Duplicate	Total/NA	Solid	Moisture	
490-71501-B-1 DU	Duplicate	Total/NA	Solid	Moisture	
490-71526-1	1352 Cardinal - 2	Total/NA	Soil	Moisture	
490-71526-2	465 Dogwood - 2	Total/NA	Soil	Moisture	

Client Sample ID: 1352 Cardinal - 2

Date Collected: 01/26/15 14:15 Date Received: 01/30/15 08:00

Lab Sample ID: 490-71526-1 Matrix: Soil

Lab Sample ID: 490-71526-2

Matrix: Soil

Percent Solids: 79.5

Percent Solids: 80.6

9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.974 g	5.0 mL	224330	01/26/15 14:15	JLP	TAL NSH
Total/NA	Analysis	8260B		1	5.974 g	5.0 mL	224716	02/02/15 21:00	JMG	TAL NSH
Total/NA	Prep	5035			6.418 g	5.0 mL	224337	01/26/15 14:15	JLP	TAL NSH
Total/NA	Analysis	8260B		1	6.418 g	5.0 mL	224510	02/01/15 05:23	SLM	TAL NSH
Total/NA	Prep	3550C			37.44 g	1 mL	224884	02/03/15 09:34	LDC	TAL NSH
Total/NA	Analysis	8270D		1	37.44 g	1 mL	224923	02/03/15 22:07	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			224304	01/30/15 14:20	RRS	TAL NSH

Client Sample ID: 465 Dogwood - 2

Date Collected: 01/28/15 15:15 Date Received: 01/30/15 08:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			6.73 g	5.0 mL	224337	01/28/15 15:15	JLP	TAL NSH
Total/NA	Analysis	8260B		1	6.73 g	5.0 mL	224510	02/01/15 05:56	SLM	TAL NSH
Total/NA	Prep	3550C			37.96 g	1 mL	224884	02/03/15 09:34	LDC	TAL NSH
Total/NA	Analysis	8270D		1	37.96 g	1 mL	224923	02/03/15 22:29	SNR	TAL NSH
Total/NA	Analysis	Moisture		1			224304	01/30/15 14:20	RRS	TAL NSH

Laboratory References:

TAL NSH = TestAmerica Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

TestAmerica	
THE LEADER IN ENVIRONMENTAL TESTING Nashville, TN COOLER RECEIPT FORM	and Chair of Custody
Cooler Received/Opened On 1/30/2015 @ 0800 490-	71526 Chain C.
. Tracking # (last 4 digits, FedEx)	
Courier: FedEx IR Gun ID 12080142	
2. Temperature of rep. sample or temp blank when opened: Degrees Celsi	us 🕥
If Item #2 temperature is 0°C or less, was the representative sample or temp blank fro	zen? YES NO. (NA)
H. Were custody seals on outside of cooler? If yes, how many and where: ONE Fron F + Back	YES. NONA
5. Were the seals intact, signed, and dated correctly?	YES.NONA
5. Were custody papers inside cooler?	YES NO NA
certify that I opened the cooler and answered questions 1-6 (initial)	
7. Were custody seals on containers: YES NO and Intact	YES NO NA
Were these signed and dated correctly?	YES NO CNA
B. Packing mat'l used?/Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert	Paper Other None
9. Cooling process:	ryice Other None
10. Did all containers arrive in good condition (unbroken)?	YES NO NA
1. Were all container labels complete (#, date, signed, pres., etc)?	VES NO NA
12. Did all container labels and tags agree with custody papers?	YES NONA
I3a. Were VOA vials received?	TES.NONA
b. Was there any observable headspace present in any VOA vial?	YESNONA
14. Was there a Trip Blank in this cooler? YES. NO.NA If multiple coolers, se	quence #
certify that I unloaded the cooler and answered questions 7-14 (intial)	14
5a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH	evel? YESNO.NA
b. Did the bottle labels indicate that the correct preservatives were used	YESNO
16. Was residual chlorine present?	YESNO. NA
certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (in	ntial) ATT
17. Were custody papers properly filled out (ink, signed, etc)?	TESNONA
18. Did you sign the custody papers in the appropriate place?	YES NONA
	APS NO NA
19. Were correct containers used for the analysis requested?	TEBNONA
19. Were correct containers used for the analysis requested? 20. Was sufficient amount of sample sent in each container?	YES.NONA
19. Were correct containers used for the analysis requested? 20. Was sufficient amount of sample sent in each container? I certify that I entered this project into LIMS and answered questions 17-20 (intial)	(YES).NONA

12

2/6/2015

Client: Small Business Group Inc.

Login	Number:	71526	
-------	---------	-------	--

List Number: 1 Creator: Huskey, Adam

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a<br survey meter.	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 490-71526-1

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 465Dogwood-2, 465 Dogwood Drive, Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANK SIZE (GAL)

Steel

280

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

(Name)

Appendix C Laboratory Analytical Report - Groundwater

Volatile Organic Compounds by GC/MS

Client: AECOM - Resolution Consultants Description: BEALB465TW02WG20170301 Date Sampled:03/01/2017 1645 Date Received: 03/03/2017							Laboratory ID: SC03027-008 Matrix: Aqueous							
RunPrep Method15030B	Analytical Method 8260B	Dilution 1	Analys 03/07/20	is Date Analyst 017 1149 PMV	Prep	Date	Batch 36403							
Parameter		Nur	CAS mber	Analytical Method	Result	Q	LOQ	LOD	DL	Units	Run			
Benzene		71-	-43-2	8260B	0.80	U	1.0	0.80	0.40	ug/L	1			
Ethylbenzene		100-	-41-4	8260B	1.5		1.0	0.80	0.40	ug/L	1			
Naphthalene		91-	-20-3	8260B	8.1		1.0	0.80	0.40	ug/L	1			
Toluene		108-	-88-3	8260B	0.80	U	1.0	0.80	0.40	ug/L	1			
Xylenes (total)		1330-	-20-7	8260B	0.80	U	1.0	0.80	0.40	ug/L	1			
Surrogate	Q %	Run 1 Recovery	Accepta Limi	nce ts										
Bromofluorobenzene		108	85-11	4										
Dibromofluoromethane		112	80-11	9										
1,2-Dichloroethane-d4		102	81-11	8										

89-112

99

PQL = Practical quantitation limitB = Detected in the method blankE = Quantitation of compound exceeded the calibration rangeH = Out of holding timeQ = Surrogate failureND = Not detected at or above the MDLJ = Estimated result < PQL and ≥ MDL</td>P = The RPD between two GC columns exceeds 40%N = Recovery is out of criteriaL = LCS/LCSD failureWhere applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W"S = MS/MSD failureS = MS/MSD failure

Shealy Environmental Services, Inc.106 Vantage Point DriveWest Columbia, SC 29172(803) 791-9700Fax (803) 791-9111www.shealylab.com

Toluene-d8

Client: AECOM - Resolution Consultants

Description: BEALB465TW02WG20170301

Laboratory ID: SC03027-008

Date Sampled:03/01/2017 1645

Matrix: Aqueous

Date Received: 03/03/2017

Run Prep Method 1 3520C	Analytical Method 8270D	Dilution Anal 1 03/10	ysis Date Analyst /2017 2355 RBH	Prep Date 03/05/2017 1656	Batch 36264			
Parameter		CAS Number	Analytical Method	Result Q	LOQ	LOD	DL	Units Run
Benzo(a)anthracene		56-55-3	8270D	0.10 U	0.20	0.10	0.040	ug/L 1
Benzo(b)fluoranthene		205-99-2	8270D	0.10 U	0.20	0.10	0.040	ug/L 1
Benzo(k)fluoranthene		207-08-9	8270D	0.10 U	0.20	0.10	0.040	ug/L 1
Chrysene		218-01-9	8270D	0.10 U	0.20	0.10	0.040	ug/L 1
Dibenzo(a,h)anthracene		53-70-3	8270D	0.10 U	0.20	0.10	0.040	ug/L 1
Surrogate	Q % R	Run 1 Accep Recovery Lii	tance mits					
Nitrobenzene-d5		76 44-	120					
2-Fluorobiphenyl		72 44-	119					
Terphenyl-d14		72 50-	134					

PQL = Practical quantitation limit B = Detected in the method blank E = Quantitation of compound exceeded the calibration range H = Out of holding time Q = Surrogate failure ND = Not detected at or above the MDL $J = Estimated result < PQL and <math>\ge MDL$ $\mathsf{P}=\mathsf{The}\;\mathsf{RPD}$ between two GC columns exceeds 40% N = Recovery is out of criteria L = LCS/LCSD failure Where applicable, all soil sample analysis are reported on a dry weight basis unless flagged with a "W" S = MS/MSD failure

Shealy Environmental Services, Inc. 106 Vantage Point Drive West Columbia, SC 29172 (803) 791-9700 Fax (803) 791-9111 www.shealylab.com Appendix D Regulatory Correspondence

August 1, 2016

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: IGWA Laurel Bay Underground Tank Assessment Reports Dated July 2015, November 2015, March 2016

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the Underground Storage Tanks (USTs) Assessment Reports for the addresses listed in the attachment. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 <u>et seq</u>., as amended).

The Department has reviewed the referenced reports. The submitted analytical results indicate that petroleum constituents are above established Risk-Based Screening Levels and additional investigation is warranted. Specifically, the Department requests that a groundwater sampling proposal be generated to determine if there has been an impact to groundwater at these sites.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

Allt

Laurel Petrus, Environmental Engineer Associate Bureau of Land and Waste Management

Cc: Russell Berry, EQC Region 8 (via email) Shawn Dolan, Resolution Consultants (via email) Bryan Beck, NAVFAC MIDATLANTIC (via email) Craig Ehde (via email)

Attachment to: Petrus to Drawdy, August 1, 2016 Subject: IGWA, Laurel Bay Underground Tank Assessment Reports Dated July 2015, November 2015, March 2016

Draft Final Initial Groundwater Investigation Report for (7 addresses/8 tanks)

465 Dogwood Tank 2	254 Beech Tank 2
1352 Cardinal Tank 2*	641 Dahlia Tank 2
121 Banyan	1346 Cardinal
254 Beech Tank 1	1177 Bobwhite

permanent wells and groundwater monitoring was approved 2/22/16

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

July 1, 2015

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: No Further Action Laurel Bay Underground Storage Tank Assessment Reports for: See attached sheet

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the referenced Underground Storage Tanks (USTs) Assessment Reports for the addresses listed above. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

The Department has reviewed the referenced assessment reports and agrees there is no indication of soil or groundwater contamination on these properties, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at kriegkm@dhec.sc.gov or 803-898-0255.

Sincerely,

Kent Krieg Department of Defense Corrective Action Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

Cc: Russell Berry (via email) Craig Ehde (via email) Bryan Beck (via email)

Catherine E. Heigel, Director Promoting and protecting the health of the public and the environment

Attachment to:	Krieg to Drawdy
	Subject: NFA
	Dated 7/1/2015

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks)

111 Birch	363 Aspen
123 Banyan	364 Aspen
131 Banyan	366 Aspen
134 Banyan	369 Aspen
145 Laurel Bay	373 Aspen
150 Laurel Bay	381 Aspen
153 Laurel Bay	401 Elderberry
154 Laurel Bay	402 Elderberry
155 Laurel Bay	404 Elderberry
200 Balsam	410 Elderberry
202 Balsam	420 Elderberry
203 Balsam	424 Elderberry
208 Balsam	435 Elderberry Tank 3
210 Balsam	452 Elderberry
211 Balsam	460 Elderberry
220 Cypress	465 Dogwood
222 Cypress	477 Laurel Bay
223 Cypress	487Laurel Bay
252 Beech Tank 2	513 Laurel Bay
271 Beech Tank 1	519 Laurel Bay
271 Beech Tank 2	524 Laurel Bay
284 Birch Tank 1	535 Laurel Bay
284 Birch Tank 2	553 Dahlia
308 Ash	590 Aster
311 Ash	591 Aster
312 Ash	610 Dahlia
317 Ash	612 Dahlia
318 Ash	628 Dahlia
337 Ash	636 Dahlia
351 Ash Tank 1	637 Dahlia Tank 1
351 Ash Tank 2	637 Dahlia Tank 2
355 Ash Tank 1	641 Dahlia
355 Ash Tank 2	642 Dahlia Tank 1
360 Aspen	642 Dahlia Tank 2

SOUTH CAROLINA DEPARTMENT OF HEALTH AND ENVIRONMENTAL CONTROL 2600 Bull Street • Columbia, SC 29201 • Phone: (803) 898-3432 • www.scdhec.gov Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

655 Camellia	920 Albacore
662 Camellia	922 Barracuda Tank 1
683 Camellia	922 Barracuda Tank 2
684 Camellia	924 Albacore
689 Abelia	925 Albacore
694 Abelia	926 Albacore
695 Abelia	930 Albacore
741 Blue Bell	931 Albacore
742 Blue Bell	933 Albacore
755 Althea	936 Albacore
757 Althea	938 Albacore
776 Laurel Bay	939 Albacore
777 Azalea	940 Albacore
779 Laurel Bay	1010 Foxglove
781 Laurel Bay	1066 Gardenia
802 Azalea	1068 Gardenia
816 Azalea	1071 Heather Tank 2
822 Azalea	1100 Iris Tank 2
823 Azalea	1128 Iris
825 Azalea	1178 Bobwhite
828 Azalea	1204 Cardinal
837 Azalea	1208 Cardinal
851 Dolphin	1209 Cardinal
856 Dolphin	1210 Cardinal
857 Dolphin	1215 Cardinal
861 Dolphin	1216 Cardinal
864 Dolphin	1217 Cardinal Tank 1
868 Dolphin	1217 Cardinal Tank 2
872 Dolphin	1233 Dove
879 Cobia	1244 Dove
886 Cobia	1250 Dove
888 Cobia	1252 Dove
889 Cobia	1254 Dove
901 Barracuda	1256 Dove
902 Barracuda	1258 Dove
903 Barracuda	1263 Dove
904 Barracuda	1269 Dove
909 Barracuda	1276 Dove
910 Barracuda	1283 Dove
914 Barracuda	1285 Dove
915 Barracuda	1288 Eagle

Laurel Bay Underground Storage Tank Assessment Reports for: (153 addresses/161 tanks) cont.

1296 Eagle	1330 Albatross
1307 Eagle	1331 Albatross
1321 Albatross	1333 Albatross
1322 Albatross	1334 Albatross
1327 Albatross	1335 Albatross
1328 Albatross	

July 27, 2017

Commanding Officer Attention: NREAO Mr. William A. Drawdy United State Marine Corps Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE: Draft Final Initial Groundwater Investigation Report, February and March 2017

Dear Mr. Drawdy:

The South Carolina Department of Health and Environmental Control (DHEC) received groundwater data from temporary monitoring well installations in the Draft Final Groundwater Investigation Report, Laurel Bay Military Housing Area for the fifty two (52) addresses shown in the attachment. The regulatory authority for the investigation and cleanup of releases from these tank systems is the South Carolina Pollution Control Act (S.C. Code Ann. §48-1-10 et seq., as amended).

Per DHEC's request, groundwater samples were collected from the attached referenced addresses. DHEC reviewed the groundwater data and previous investigations and it agrees with the conclusions and recommendations included in the document. To further assess the impact to groundwater, permanent groundwater monitoring wells should be installed at the three (3) stated addresses. For the remaining forty nine (49) addresses, there is no indication of contamination on the property and therefore no further investigation is required at this time.

Please note that DHEC's decision is based on information provided by the Marine Corps Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, DHEC retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at petruslb@dhec.sc.gov or 803-898-0294.

Sincerely,

Lalpt

Laurel Petrus, Environmental Engineer Associate Bureau of Land and Waste Management

Cc: Russell Berry, EQC Region 8 Shawn Dolan, Resolution Consultants Bryan Beck, NAVFAC MIDLANT Attachment to: Petrus to Drawdy

Draft Final Initial Groundwater Investigation Report for (52 addresses)

Permanent Well Installation recommedation (3 Addresses):

- 254 Beech Street (110 ug/L)
- o 268 Beech Street (28 ug/L)
- o 774 Althea Street (35 ug/L)

No Further Action recommendation (49 addresses):

113 Birch Drive 0 121 Banyan Drive 0 122 Banyan Drive 0 **159 Cypress Street** 0 221 Cypress Street 0 274 Birch Drive 0 279 Birch Drive 0 283 Birch Drive 0 328 Ash Street 0 346 Ash Street 0 359 Aspen Street 0 370 Aspen Street 0 377 Aspen Street 0 409 Elderberry Drive 0 465 Dogwood Drive 0 480 Laurel Bay Boulevard 0 486 Laurel Bay Boulevard 0 515 Laurel Bay Boulevard Q 542 Laurel Bay Boulevard 0 593 Aster Street 0 630 Dahlia Drive 0 641 Dahlia Drive 0 693 Camelia Drive 0 723 Bluebell Lane 0 860 Dolphin Street 0 873 Cobia Drive 0 883 Cobia Drive 0 905 Barracuda Drive 0 921 Barracuda Drive 0 935 Albacore Street 0 946 Albacore Street 0 1037 Iris Lane 0 1039 Iris Lane 0 1110 Iris Lane 0 1134 Iris Lane 0 1143 Iris Lane 0 1177 Bobwhite Drive 0 1202 Cardinal Lane 0 0 1212 Cardinal Lane 0 1222 Cardinal Lane 1224 Cardinal Lane 0 1226 Dove Lane 0 1236 Dove Lane 0 1245 Dove Lane 0 1247 Dove Lane 0 0 1274 Albatross Drive 1319 Albatross Drive 0 1337 Albatross Drive 0 1346 Cardinal Lane 0